• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
YANG Hui, WANG Hua, WU Xia, TANG Wei, LAN Gaoyong, TU Linling. Comparative study of three methods for testing hydrogen and oxygen isotope of karst water samples[J]. CARSOLOGICA SINICA, 2018, 37(4): 632-637. doi: 10.11932/karst20180418
Citation: YANG Hui, WANG Hua, WU Xia, TANG Wei, LAN Gaoyong, TU Linling. Comparative study of three methods for testing hydrogen and oxygen isotope of karst water samples[J]. CARSOLOGICA SINICA, 2018, 37(4): 632-637. doi: 10.11932/karst20180418

Comparative study of three methods for testing hydrogen and oxygen isotope of karst water samples

doi: 10.11932/karst20180418
  • Publish Date: 2018-08-25
  • Compared with water samples in non-karst areas, water samples in karst areas have higher Ca2+ content, and this characteristics has certain impact on the hydrogen-oxygen isotope test results in water bodies. In this paper, three commonly used methods of high temperature conversion/elemental analysis, i.e. isotope ratio mass spectrometry (TC/EA-IRMS), sample preparation device-stable isotope mass spectrometer (GasbenchⅡ-IRMS) and laser spectroscopy for the detection of hydrogen-oxygen isotopes of water samples in karst areas were applied to conduct a comparative study. The study area is the underground river of Maocun village, located in Chaotian township, Lingchuan county, Guilin City. The underground river outlet, cave drip water and karst groundwater samples were collected and analysed by using the above methods. Testing results show that,for the hydrogen isotope, in general the precision of TC/EA-IRMS is not more than (≤) 0.3‰, while the precision of laser spectroscopy is ≤0.1‰,and both are better than the GasbenchⅡ-IRMS with a precision of 1.4‰. For the oxygen isotope, the precision of GasbenchⅡ-IRMS is ≤0.02‰,laser spectroscopy is≤0.04‰,and both are better than TC/EA-IRMS with the precision of 0.16‰. Therefore, the determination of hydrogen and oxygen isotopes of the water samples in karst area by laser spectroscopy can meet the high precision test requirements of the samples in karst area due to the small quantity of samples and high precision. However, due to the existence of a high temperature gasification chamber in the laser spectrometer, and if the high salinity karst water is continuously tested for a long time, whether the gasification efficiency of the water sample affected by the consolidation of the salt in the gasification chamber needs further study.

     

  • loading
  • [1]
    刘筱, 张福平, 雷声剑,等. 西安大气降水稳定同位素变化规律及影响因素分析[J]. 江西农业学报, 2016, 28(6):71-75.
    [2]
    贾新生,张东,赵志琦.南太行山山前平原地下水和地表水氢氧同位素组成及环境意义[J].地球与环境,2016,44(3):281-289.
    [3]
    孙晓旭, 陈建生, 刘晓艳. 稳定性氢氧同位素研究土壤吸湿水的性质[J]. 水电能源科学, 2010, 28(3):118-120.
    [4]
    王文祥,安永会,李文鹏,等.基于环境同位素技术的张掖盆地地下水流动系统分析[J].水文地质工程地质,2016,43(2):25-30.
    [5]
    王仕琴,宋献方,肖国强,等.基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展, 2009, 20(4): 495-501.
    [6]
    王彩霞, 张杰, 董志文,等. 基于氢氧同位素和水化学的祁连山老虎沟冰川区径流过程分析[J]. 干旱区地理(汉文版), 2015, 38(5):927-935.
    [7]
    朱庆增, 孙青, 苏治国,等. 加速溶剂萃取同位素质谱分析土壤水的氢氧同位素[J]. 分析化学, 2014(9):1270-1275.
    [8]
    姜海宁, 谷洪彪, 于一雷,等. 瓶装饮用水的水化学、同位素特征及其指示意义[J]. 地球与环境, 2015, 43(4):403-414.
    [9]
    孙青, 王晓华, 石丽明,等.Gasbench-IRMS水平衡氢氧同位素分析方法研究[J]. 岩矿测试,2009,28(1):1-4.
    [10]
    刘运德, 甘义群, 余婷婷, 等. 微量水氢氧同位素在线同时测试技术—热转换元素分析同位素比质谱法[J]. 岩矿测试,2010,29(6): 643-647.
    [11]
    袁红朝, 张丽萍, 耿梅梅,等. Flash HT和GasBench Ⅱ-IRMS分析水中氢氧同位素的方法比较[J]. 质谱学报, 2013, 34(6):347-352.
    [12]
    张琳, 韩梅, 贾艳琨,等. 同位素比值质谱与激光吸收光谱分析水中氢氧同位素方法的比较[J]. 质谱学报, 2015, 36(6):559-564.
    [13]
    靳静静, 李俊超, 司炳成. 激光水稳定性同位素分析仪测定矿泉水中的δ2H、 δ18O和 δ17O[J]. 分析仪器, 2016(6):33-36.
    [14]
    蒲俊兵, 李建鸿, 吴夏,等. 热分层效应控制的水库水体氢氧同位素特征[J]. 水科学进展, 2016, 27(4):561-568.
    [15]
    吴友杰, 杜太生. 覆膜沟灌下土壤水氢氧同位素分布特征及其水分运动规律研究[J]. 中国农村水利水电, 2016(9):73-76.
    [16]
    袁建飞, 邓国仕, 徐芬,等. 毕节市北部岩溶地下水水文地球化学特征[J]. 水文地质工程地质, 2016, 43(1):12-21.
    [17]
    杨会, 王华, 应启和,等. 不同检测方法对氢氧同位素分馏的影响[J]. 岩矿测试, 2012, 31(2):225-228.
    [18]
    唐伟, 曹建华, 杨会,等. 外源水对碳酸盐侵蚀速率研究:以桂林毛村地下河为例[J].地球与环境,2014,42(2):207-212.
    [19]
    陶成, 张美珍, 杨华敏,等. Gasbench—IRMS水平衡氢同位素分析方法研究及应用[J]. 质谱学报, 2006, 27(4):215-220.
    [20]
    刘文茹, 彭新华, 沈业杰,等. 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J]. 生态学杂志, 2013, 32(5):1181-1186.
    [21]
    Brand W A, Geilmann H, Crosson E R, et al. Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry: a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures[J]. Rapid Communications in Mass Spectrometry, 2009, 23(12):1879-1884.
    [22]
    West A G, Goldsmith G R, Brooks P D, et al. Discrepancies between isotope ration infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters[J]. Rapid Communications in Mass Spectrometry, 2010, 24(17):1948-1954.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2009) PDF downloads(712) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return