• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
PEI Jie, NIU Zheng, WANG Li, HUANG Ni, CAO Jianhua. Monitoring to variations of vegetation cover using long-term time series remote sensing data on the Google Earth Engine cloud platform[J]. CARSOLOGICA SINICA, 2018, 37(4): 608-616. doi: 10.11932/karst20180415
Citation: PEI Jie, NIU Zheng, WANG Li, HUANG Ni, CAO Jianhua. Monitoring to variations of vegetation cover using long-term time series remote sensing data on the Google Earth Engine cloud platform[J]. CARSOLOGICA SINICA, 2018, 37(4): 608-616. doi: 10.11932/karst20180415

Monitoring to variations of vegetation cover using long-term time series remote sensing data on the Google Earth Engine cloud platform

doi: 10.11932/karst20180415
  • Publish Date: 2018-08-25
  • In this paper, we take the Nandong underground river watershed as an example, to quantitatively estimate annual maximum Fractional Vegetation Cover(FVC) using time series Landsat-NDVI data from 1988 to 2016. There were in total 1952 scenes extracted and analyzed using Dimidiate Pixel Model through Google Earth Engine which is the most advanced cloud computing platform for remotely sensed big data. Spatio-temporal change characteristics during the past 29 years were also analyzed on both the entire groundwater water catchment and a pixel scales, respectively. Results show that,(1) Most parts of the Nandong underground river watershed have the middle or middle-high coverage; FVC increases with the growing elevation and slope; the area of the region in Nandong which has the annual maximum FVC higher than 60% accounts for 45.75% of the total watershed. (2) During the past 29 years, the annual maximum FVC exhibits a growing trend in Nandong, with the average annual increase rate of 0.56%. The area of the region which experienced slight improvement or obvious improvement in FVC accounts for 38.84% of the total area. (3) Compared with 1988, the area of high coverage and middle-high coverage regions in 2016 increased by 50.51% and 18.40%, respectively. While the area of the middle coverage region, middle-low coverage and low coverage regions decreased by 24.05%, 47.95% and 37.72%, respectively. Comprehensive control on karst rocky desertification, e.g. natural forest conservation and climate change, have important effects on vegetation recovery and eco-environment reconstruction in Nandong. Results of this study can provide basic data for monitoring to subsequent karst rocky desertification.

     

  • loading
  • [1]
    王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨[J]. 中国岩溶, 2002, 21(2):101-105.
    [2]
    刘拓,周光辉,但新球,等.中国岩溶石漠化——现状、成因与防治[M].北京:中国林业出版社,2009:69-72.
    [3]
    王兮之, 甘春英, 梁钊雄,等. 粤北岩溶山区连江流域植被覆盖度动态变化研究[J]. 中国岩溶, 2010, 29(4):425-433.
    [4]
    苏维词, 朱文孝, 滕建珍. 喀斯特峡谷石漠化地区生态重建模式及其效应[J]. 生态环境学报, 2004, 13(1):57-60.
    [5]
    Berlin G A I, Linusson A C, Olsson E G A. Vegetation changes in seminatural meadows with unchanged management in southern Sweden, 1965-1990.[J]. Acta Oecologica, 2000, 21(2):125-138.
    [6]
    Schweers W, Bai Z, Campbell E, et al. Identification of potential areas for biomass production in China: Discussion of a recent approach and future challenges[J]. Biomass & Bioenergy, 2011, 35(5):2268-2279.
    [7]
    Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1):76-87.
    [8]
    贾坤, 姚云军, 魏香琴,等. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 2013, 28(7):774-782.
    [9]
    甘春英, 王兮之, 李保生,等. 连江流域近18年来植被覆盖度变化分析[J]. 地理科学, 2011(8):1019-1024.
    [10]
    吴昌广, 周志翔, 肖文发,等. 基于MODIS NDVI的三峡库区植被覆盖度动态监测[J]. 林业科学, 2012, 48(1):22-28.
    [11]
    Xiao J, Moody A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA[J]. Remote Sensing of Environment, 2005, 98(2-3):237-250.
    [12]
    TS. Purevdorj, R. Tateishi, T. Ishiyama, et al. Relationships between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing, 1998, 19(18):3519-3535.
    [13]
    穆少杰, 李建龙, 陈奕兆,等. 2001-2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9):1255-1268.
    [14]
    李登科, 范建忠, 王娟. 陕西省植被覆盖度变化特征及其成因[J]. 应用生态学报, 2010, 21(11):2896-2903.
    [15]
    李苗苗, 吴炳方, 颜长珍,等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4):153-159.
    [16]
    覃星铭, 蒋忠诚, 何丙辉,等. 南洞流域东部重点区石漠化现状及治理对策[J]. 中国岩溶, 2014, 33(4):456-463.
    [17]
    王宇, 张贵. 滇东岩溶石山地区石漠化特征及成因[J]. 地球科学进展, 2003, 18(6):933-938.
    [18]
    涂杰楠, 童立强, 王珊珊,等. 南洞地下河流域南部岩溶石漠化空间分布特征分析[J]. 中国岩溶, 2016, 35(5):566-573.
    [19]
    康彦仁. 云南南洞地下河系统及水资源开发利用[J]. 中国岩溶, 1993(4):307-318.
    [20]
    马祖陆. 云南南洞地下河流域地貌特征及地下河发育演化的初步研究[J]. 中国岩溶, 1993,12(3):273-283.
    [21]
    王九中, 田海峰, 邬明权,等. 河南省冬小麦快速遥感制图[J]. 地球信息科学学报, 2017, 19(6):846-853.
    [22]
    姜高珍, 韩冰, 高应波,等. Landsat系列卫星对地观测40年回顾及LDCM前瞻[J]. 遥感学报, 2013,17(5):1033-1048.
    [23]
    马志勇, 沈涛, 张军海,等. 基于植被覆盖度的植被变化分析[J]. 测绘通报, 2007(3):45-48.
    [24]
    吴云,曾源, 赵炎,等.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424.
    [25]
    李钰溦, 贾坤, 魏香琴,等. 中国北方地区植被覆盖度遥感估算及其变化分析[J]. 国土资源遥感, 2015, 27(2):112-117.
    [26]
    张盼盼, 胡远满, 肖笃宁,等. 一种基于多光谱遥感影像的喀斯特地区裸岩率的计算方法初探[J]. 遥感技术与应用, 2010, 25(4):510-514.
    [27]
    陶建霜,陈光杰,陈小林,等.多重环境压力下大屯海硅藻群落结构的长期变化[J].应用生态学报,2015,26(8):2525-2533.
    [28]
    王苏民. 中国湖泊志[M].北京:科学出版社, 1998.
    [29]
    赖兴会. 云南石漠化的生态特征及其危机表现[J]. 林业调查规划, 2004, 29(2):80-82.
    [30]
    国家发展改革委. 岩溶地区石漠化综合治理工程“十三五”建设规划[EB/OL]. http://www.ndrc.gov.cn/gzdt/201604/W020160422400969787668.pdf. 2016-03-21/2017-12-23.
    [31]
    邓菊芬, 崔阁英, 王跃东,等. 云南岩溶区的石漠化与综合治理[J]. 草业科学, 2009, 26(2):33-38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2689) PDF downloads(1434) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return