Citation: | HUANG Binghui, LI Qiang, FANG Junjia, CAO Jianhua, JIN Zhenjiang, PENG Wenjie, LU Xiaoxuan, LIANG Yueming. Effects of CO2 concentration gradient on carbonicanhydrase of two karst microalgae[J]. CARSOLOGICA SINICA, 2018, 37(1): 91-100. doi: 10.11932/karst20180105 |
[1] |
Brodersen J. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families[J]. Molecular Phylogenetics & Evolution, 1996, 5(1):50-77.
|
[2] |
李强, 何媛媛, 曹建华,等. 植物碳酸酐酶对岩溶作用的影响及其生态效应[J]. 生态环境学报, 2011, 20(12):1867-1871.
|
[3] |
Bahn Y S, Mühlschlegel F A. CO2, sensing in fungi and beyond[J]. Current Opinion in Microbiology, 2006, 9(6):572-578.
|
[4] |
李强.碳酸酐酶及多肽类生物大分子与岩溶动力学理论的思考[J].中国岩溶,2010,29(3):253-257.
|
[5] |
余龙江, 吴云, 李为,等. 微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究[J]. 中国岩溶, 2004, 23(3):225-228.
|
[6] |
张小菊,杨翠珍,杨娟. 微生物碳酸酐酶在岩溶发育中的研究现状及展望[J]. 化学与生物工程,2011,28(2):9-11.
|
[7] |
聂磊, 萧洪东, 侯雨佳,等. 不同光照条件下石灰岩表面蓝藻生物岩溶侵蚀能力与生理活性研究[J]. 地学前缘, 2012, 19(6):254-259.
|
[8] |
吴雁雯, 张金池. 微生物碳酸酐酶在岩溶系统碳循环中的作用与应用研究进展[J].生物学杂志,2015,32(3):78-83.
|
[9] |
Hu H J, Li Y Y, Wei Y X, et al. Chinese Freshwater Algae[M]. Shanghai: Science and Technology Press,1980:1-318.
|
[10] |
Wei Y X. Chinese Freshwater Algae Records(Vol.Ⅱ)[M].Beijing: Science Press,2003: 1-84.
|
[11] |
史顺玉. 溶藻细菌对藻类的生理生态效应及作用机理研究[D].武汉:中国科学院研究生院(水生生物研究所), 2006.
|
[12] |
Xia J R, Gao K S. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae[J]. Journal of Integrative Plant Biology,2005, 47(6):668-675.
|
[13] |
Miller A G, Espie G S, Canvin D T. Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review[J]. Revue Canadienne De Botanique, 1990,68(6):1291-1302.
|
[14] |
Badger M R, Bassett M, Comins H N. A model for HCO3 accumulation and photosynthesis in the cyanobacterium Synechococcus sp. theoretical predictions and experimental observations[J]. Plant Physiology, 1985, 77(2):465-471.
|
[15] |
Kaplan A, Reinhold L. CO2 Concentrating Mechanisms In Photosynthetic Microorganisms[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1999, 50(50):539.
|
[16] |
Kaplan A, Reinhold L. Nature of the Inorganic Carbon Species Actively Taken up by the Cyanobacterium Anabaena variabilis[J]. Plant Physiology, 1984, 76(3):599.
|
[17] |
沈佳. CO2和光照强度对蛋白核小球藻CO2浓缩机制(CCM)的影响[D]. 宁波:宁波大学, 2015.
|
[18] |
王山杉, 刘永定, 邹永东,等. 微囊藻碳酸酐酶活性在不同环境因素下的调节与适应[J]. 生态学报, 2006, 26(8):2443-448.
|
[19] |
Fett J P, Coleman J R. Regulation of Periplasmic Carbonic Anhydrase Expression in Chlamydomonas reinhardtii by Acetate and pH[J]. Plant Physiology, 1994, 106(1):103.
|
[20] |
王培,胡清菁,曹建华,等. 念珠藻对岩溶水中Ca2+、HCO3利用效率实验研究[J]. 广西植物,2014,34(6):799-805.
|
[21] |
Marcelle R D. Predicting storage quality from preharvest fruit mineral analyses.A review[J]. Acta Horticulturae, 1990,274(38):305-314.
|
[22] |
Hanson J B. The functions of calcium in plant nutrition[J]. Advances in Plant Nutrition, 1984,1(1):149-208.
|
[23] |
Harr M W, Distelhorst C W. Apoptosis and autophagy: decoding calcium signals that mediate life or death[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(10):a005579.
|
[24] |
徐敏. 蓝藻CCM的无机碳转运系统的理化功能研究[D].北京: 中国科学院研究生院;中国科学院大学, 2008.
|
[25] |
周红, 任久长, 蔡晓明. 沉水植物昼夜光补偿点及其测定[J]. 环境科学学报, 1997, 17(2):256-258.
|
[26] |
何媛媛. 岩溶生态系统中土壤及典型植物碳酸酐酶对岩溶作用的影响[D].桂林:广西师范大学, 2010.
|
[27] |
王培, 曹建华, 李亮,等. 不同来源小球藻对岩溶水Ca2+、HCO3利用的初步研究[J]. 水生生物学报, 2013,37(4):626-631.
|
[28] |
叶澍. 地球上最早出现的藻类:蓝藻[J]. 海洋世界, 2016,37(2):6-7.
|
[29] |
高樱红. 降水离子浓度总和与电导率的关系[J]. 化学分析计量, 2002, 11(2):62-63.
|
[30] |
Walker J E, Saraste M, Runswick M J, et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold[J]. Embo Journal, 1982, 1(8):945.
|
[31] |
李为, 余龙江, 余俊峰,等. 岩溶环境因子对细菌胞外碳酸酐酶表达及活性的影响[J]. 微生物学通报, 2005, 32(5):35-39.
|
[32] |
王培. 几种水生藻类的碳汇效应研究[D].桂林:广西师范大学, 2013.
|
[33] |
李强. 水生藻类碳酸酐酶(CA)对碳酸钙沉积速率控制的试验研究[D].桂林:广西师范大学, 2004.
|