• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
ZHANG Tao, LI Jianhong, PU Junbing, LI Rui, WU Feihong, LI Li. Experimental study on the utilization efficiency of Chlorella to Ca2+ and HCO3- in karst water[J]. CARSOLOGICA SINICA, 2018, 37(1): 81-90. doi: 10.11932/karst20180104
Citation: ZHANG Tao, LI Jianhong, PU Junbing, LI Rui, WU Feihong, LI Li. Experimental study on the utilization efficiency of Chlorella to Ca2+ and HCO3- in karst water[J]. CARSOLOGICA SINICA, 2018, 37(1): 81-90. doi: 10.11932/karst20180104

Experimental study on the utilization efficiency of Chlorella to Ca2+ and HCO3- in karst water

doi: 10.11932/karst20180104
  • Publish Date: 2018-02-25
  • Chlorella was collected from Dalongdong cave in Shanglin county of Guangxi to study its utilization efficiency of Ca2+and HCO3- in three water bodies with different concentrations of DIC (4.6 mmol·L-1, 2.5 mmol·L-1and 0.5 mmol·L-1) in the closed system. The results show that: (1)After 7 days of cultivation in three different DIC solution of 4.6 mmol·L-1、2.5 mmol·L-1and 0.5 mmol·L-1, Chlorella biomass increased from 0.04 Abs,to 0.56 Abs,0.50 Abs and 0.44 Abs, respectively. In the environment with high HCO3-and Ca2+ concentration, Chlorella absorbed 54.95% of HCO3- in group A and 48.00% of HCO3- in group B, it also absorbed 28.26% of Ca2+ in group A and 24.14% of Ca2+in group B. In the environment with low HCO3- concentration, it was difficult for Chlorella to absorb HCO3- in group C (0.5 mmol·L-1). These findings indicate that the high concentration of HCO3- in karst reservoirs plays a role of "fertilization" on the growth of Chlorella,which is significant to the karst process-related carbon sink;(2)The amount of Ca2+ deposition caused by Chlorella photosynthesis using HCO3- was higher than the amount of Ca2+ absorbed by Chlorella photosynthesis;(3)Photosynthesis from Chlorella make δ13CDIC positive, while the respiration make δ13CDIC negative in the culture medium.

     

  • loading
  • [1]
    Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews. 2010, 99:162-172.
    [2]
    Liu Z, Dreybrodt W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015,2(60):182-191.
    [3]
    Maier-reimer E. The biological pump in the greenhouse. Global and planetary change, 1993, 8(1-2): 13-15.
    [4]
    Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems (New York. Print), 2007, 10(1): 172-185.
    [5]
    Pu J, Li J, Khadka M B, et al. In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream[J]. Science of the Total Environment, 2017, 579: 1343-1355.
    [6]
    刘再华. 岩石风化碳汇研究的最新进展和展望[J].科学通报,2012, 57(2): 95-102.
    [7]
    Larson C. An unsung carbon sink[J]. Science, 2011, 334(6058): 886-887.
    [8]
    Wu Q Y. Algae creatures and the nature of the biogeochemical cycle of carbon dioxide[J]. Exploration of Nature, 1987, 6(21): 44-46.
    [9]
    吴庆余, 刘志礼, 朱浩然. 前寒武纪藻类对某些层纹状隧石形成作用的生物地球化学模式和模拟实验研究[J].地质学报, 1986, 60(4):375-389.
    [10]
    吴庆余. 微体藻类化石与红有机色素在前寒武纪地层中的同时发现[J]. 微体古生物学报,1988, 3(1): 61-68.
    [11]
    Cao J H, Yuan D X, Chris G, et al. Carbon fluxes and sinks: the consumption of atmospheric and soil CO2 by carbonate rock dissolution . Acta Geological Sinica (English Edition), 2012, 86(4): 963-972.
    [12]
    Liu Y, Liu Z, Zhang J, et al. Experimental study on the utilization of DIC by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and evaporites, 2010, 25(1): 21-26.
    [13]
    Shiraishi F, Reimer A, Bissett A, et al. Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly supersaturated setting (Westerh fer Bach, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 262(1): 91-106.
    [14]
    Zaitseva L V, Orleanskii V K, Gerasimenko L M, et al. The role of cyanobacteria in crystallization of magnesium calcites[J]. Paleontological Journal, 2006, 40(2): 125-133.
    [15]
    邓洁, 李建宏, 管章玲, 等. 一株产碳酸酐酶附生菌对铜绿微囊藻 (Microcystis aeruginosa) 生长的影响[J]. 湖泊科学, 2012, 24(3): 429-435.
    [16]
    刘彦, 张金流, 何媛媛 等. 单生卵囊藻对DIC的利用及其对 CaCO3沉积影响的研究[J]. 地球化学,2010,39(2):191-196.
    [17]
    Lerman A, Mackenzie FT. CO2 air-sea exchange due to calcium carbonate and organic matter storage and its implications for the global carbon cycle.Aquatic Geochemistry, 2005, 11(4): 345-390.
    [18]
    Colman B, Huertas I E, Bhatti S, et al. The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Functional Plant Biology, 2002, 29(3): 261-270.
    [19]
    Martin C L, Tortell P D. Bicarbonate transport and extracellular carbonic anhydrase activity in Bering Sea phytoplankton assemblages: Results from isotope disequilibrium experiments. Limnol. Oceanogr, 2006, 51(5): 2111-2121.
    [20]
    王培, 曹建华, 李亮, 等. 不同来源小球藻对岩溶水 Ca2+, HCO3-利用的初步研究[J]. 水生生物学报,2013,37(4):626-631.
    [21]
    吴沿友, 李海涛, 谢腾祥, 等. 微藻碳酸酐酶生物地球化学作用[M].北京:科学出版社,2015:4-14.
    [22]
    章程, 谢运球, 宁良丹, 等. 桂林会仙岩溶湿地典型水生植物 δ13C 特征与固碳量估算[J]. 中国岩溶, 2013, 32(3): 247-252.
    [23]
    张强. 岩溶地质碳汇的稳定性:以贵州草海地质碳汇为例[J]. 地球学报, 2015,33(6):107-112.
    [24]
    李建鸿, 蒲俊兵, 袁道先, 等. 岩溶区地下水补给型水库表层无机碳时空变化特征及影响因素[J].环境科学,2015,36(8):2833-2842.
    [25]
    Houghton J T,Ding Y,Griggs D J,et al. Climate change 2001: The scientific basis[R]. Cambridge: Cambridge University Press, 2001: 944.
    [26]
    殷燕, 张运林, 王明珠, 等. 光照强度对铜绿微囊藻 (Microcystis aeruginosa) 和斜生栅藻 (Scenedesmus obliqnus) 生长及吸收特性的影响[J].湖泊科学,2012, 24(5): 755-764.
    [27]
    Maberly S C. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae[J]. Journal of Phycology,1990,26(3):439-449.
    [28]
    Unsitalo J, Axelsson L, Carberg S. CO2 storage and CO2 concentrating in brown seaweeds [C]//Baltscheffsky M. Current Research in Photosynthesis, Dordrech:Kluwer Academic Publishers, 1990:521-524.
    [29]
    李强, 靳振江, 孙海龙. 现代藻类碳酸钙沉积试验及其同位素不平衡现象[J]. 中国岩溶, 2005,24(4):261-264.
    [30]
    王将克, 常弘, 廖金凤, 等. 生物地球化学[M]. 广州: 广东科技出版社, 1999:294-350.
    [31]
    喻元秀, 刘丛强, 汪福顺, 等. 乌江流域梯级水库中溶解无机碳及其同位素分异特征[J].科学通报, 2008, 53(16):1935-1941.
    [32]
    王亮, 肖尚斌, 刘德富, 等. 香溪河库湾夏季温室气体通量及影响因素分析[J].环境科学,2012,33(5):1471-1475.
    [33]
    刘丛强. 生物地球化学过程与地表物质循环:西南喀斯特流域侵蚀与生源要素循环[M]. 北京:科学出版社, 2007:487-511.
    [34]
    Mook W G, Bommerson J C, Staverman W H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth and Planetary Science Letters, 1974, 22(2): 169-176.
    [35]
    王培, 胡清菁, 曹建华, 等. 念珠藻对岩溶水中Ca2+, HCO3-利用效率实验研究[J]. 广西植物, 2014, 34(6): 799-805.
    [36]
    张彦辉, 安彦杰, 朱迟, 等. 水体无机碳条件对常见沉水植物生长和生理的影响[J]. 水生生物学报, 2009, 33(6):1020-1030.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2017) PDF downloads(669) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return