• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 36 Issue 5
Oct.  2017
Turn off MathJax
Article Contents
WANG Ziyan, JIANG Guanghui, GUO Fang, YUAN Xiaoyu, ZENG Xinru. Hydraulic interaction between groundwater and surface-water at Zengpiyan site in Guilin, China[J]. CARSOLOGICA SINICA, 2017, 36(5): 659-667. doi: 10.11932/karst2017y34
Citation: WANG Ziyan, JIANG Guanghui, GUO Fang, YUAN Xiaoyu, ZENG Xinru. Hydraulic interaction between groundwater and surface-water at Zengpiyan site in Guilin, China[J]. CARSOLOGICA SINICA, 2017, 36(5): 659-667. doi: 10.11932/karst2017y34

Hydraulic interaction between groundwater and surface-water at Zengpiyan site in Guilin, China

doi: 10.11932/karst2017y34
  • Publish Date: 2017-10-25
  • Zengpiyan is located in the Guilin Peak forest plain. The stability of this site is threatened by groundwater scouring due to the change of hydrodynamic conditions of karst groundwater. In order to examine the characteristics of groundwater leakage process, and to reveal the transformation process of groundwater and surface water in the protected areas of the site, this study analyzed the dynamic characteristics of water level. The tank model and water level decay equation were constructed according to the water balance elements of karst water system. Then the difference between the simulated water level and the actual water level was compared to explain the relationships between rainfall, surface water and groundwater. The results show that there are various differences between the pond and the groundwater, such as the water level, the start rising point, the decay rate and the lag time of the peak. The difference in dynamic processes reflects the strong communication capacity of karst media. The leakage process of the pond is controlled by seepage capacity. Groundwater recharging to surface water reservoirs is dominated by concentrating supplies through main runoff zones. The hydraulic interaction between groundwater and surface water shows strong dynamic patterns, especially in the high-permeability karst areas. The hydraulic interaction of groundwater and surface water is beneficial to alleviate the erosion and damage of groundwater to the cover layer.

     

  • loading
  • [1]
    张美良,朱晓燕,覃军干,等.桂林甑皮岩洞穴的形成、演化及古人类文化遗址堆积浅议[J].地球与环境,2011,39(3):305-312.
    [2]
    覃政教,林玉石,高明刚,等.桂林甑皮岩遗址岩溶地下水水害成因及防治对策[J].地球学报,2011,32(1):107-113.
    [3]
    中国地质科学院岩溶地质研究所.甑皮岩遗址地下水害防治工程水文地质勘查成果报告[R]. 桂林:中国地质科学院岩溶地质研究所,2014.
    [4]
    Guo F, Jiang G, Lo K, et al. Hazard of Sinkhole Flooding to a Cave Hominin Site and its Control Countermeasures in a Tower Karst Area, South China[C]//National Cave and Karst Research Institute Symposium,2015:447-454.
    [5]
    卢耀如.岩溶水文地质环境演化与工程效应研究[M].科学出版社,1999.
    [6]
    中国地质科学院岩溶地质研究所, 广西壮族自治区文物工作队.广西桂林甑皮岩遗址抢救性防水保护方案[R]. 桂林:中国地质科学院岩溶地质研究所,2004.
    [7]
    Yuan D X. Sensitivity of karst process to environmental change along the PEPII transect [J].Quaternary International,1997,37(2):105-113.
    [8]
    Vesper D J, loop C M, White W B. contaminant transport in karst aquifers[J]. Speleogenesis & Evolution of Karst Aquifers,2003,1(2):101-111.
    [9]
    袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1994:129-134.
    [10]
    郭琳,陈植华.岩溶地区地下河系统水资源定量评价的问题与出路[J].中国岩溶,2006,25(1):1-5.
    [11]
    徐慧珍. 济南岩溶泉域地下水水文地球化学特征及防污性能研究[D].中国地质大学(北京),2007.
    [12]
    郎赟超. 喀斯特地下水文系统物质循环的地球化学特征[D].中国科学院研究生院(地球化学研究所),2005.
    [13]
    李林立. 西南典型岩溶区生态环境对表层岩溶水调蓄功能的影响研究[D].西南大学,2009.
    [14]
    陈伟海,张之淦. 峰林平原区岩溶含水层特征与调蓄功能[J]. 中国岩溶,1999,18(1):21-29.
    [15]
    田娟,董贵明,束龙仓.孔隙-管道型西南岩溶地下河系统参数与流量衰减系数关系的数值试验研究[J].水文地质工程地质,2013,(2):13-18.
    [16]
    曾莘茹,姜光辉,郭芳,等.桂林甑皮岩洞穴遗址地下水示踪及污染来源分析[J].中国岩溶,2016,35(3):245-253.
    [17]
    徐华山,赵同谦,孟红旗,徐宗学,马朝红. 滨河湿地地下水水位变化及其与河水响应关系研究[J]. 环境科学,2011,32(2):362-367.
    [18]
    邹成杰.岩溶地区地下水位动态分析[J].中国岩溶,1995,14(3):261-269.
    [19]
    龙玉桥,李伟,李砚阁,等.疏干开采条件下晋祠岩溶水系统的水箱模型[J].中国岩溶,2011,30(1):27-33.
    [20]
    李有林.水箱模型的基本原理及其应用[J].甘肃水利水电技术,2000,(4):229-232.
    [21]
    Sugawara M. Tank model[J]. Journal of Geography (Chigaku Zasshi), 1985, 94(4): 209-221.
    [22]
    Kovács A. Geometry and hydraulic parameters of karst aquifers[D]. Université de Neuchátel, 2003.
    [23]
    Kovács A, Perrochet P, Király L, et al. A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysisv[J]. Journal of Hydrology, 2005, 303(1): 152-164.
    [24]
    曹良超.水位衰减方程在井流试验中的应用[J].水文地质工程地质,1989,(5):53-54.
    [25]
    黄敬熙.流量衰减方程及其应用:以洛塔岩溶盆地为例[J].中国岩溶,1982,1(2):41-49.
    [26]
    戈德沙伊德,德鲁.岩溶水文地质学方法[M].陈宏峰,等译,北京:科学出版社,2015:194-197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2085) PDF downloads(1092) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return