• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
JIA Long, MENG Yan, DAI Jianling. Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions[J]. CARSOLOGICA SINICA, 2017, 36(6): 819-829. doi: 10.11932/karst20170604
Citation: JIA Long, MENG Yan, DAI Jianling. Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions[J]. CARSOLOGICA SINICA, 2017, 36(6): 819-829. doi: 10.11932/karst20170604

Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions

doi: 10.11932/karst20170604
  • Publish Date: 2017-12-25
  • With the rapid development of social economy, the problems associated with karst environment and geology in China are becoming more and more prominent. Karst collapse is one of the main geologic hazards in the southern covered karst areas in China. The karst collapse frequently occurred in Guangdong Province, especially in Guangzhou, Foshan and Zhaoqing City (Guang-Fo-Zhao regions), where covered karst is widely distributed. The karst collapse history in the Guang-Fo-Zhao regions is closely related to the social and economic development, which can be divided into three stages, the first stage is from 1970s to 1980s, with shallow groundwater intensive extraction. During the period, a large number of karst groundwater was extracted, which induces karst collapse in many water sources. The second stage is from the 1990s to the beginning of this century, with a large number of limestone mines mined in the open pit. The balance of groundwater is severely damaged by excessive drainage in limestone mining, which leads to the frequent occurrence of ground collapse. The third stage is from 2003 to the present, with the leap-forward development of urban construction. The constructions of underground space and building foundation have been carried out in an all-round way. In view of the great threat of karst collapse to the lives and property of the local people, it is necessary to evaluate the susceptibility of karst collapse in Guang-fo-Zhao regions, so as to provide support for land planning and disaster prevention, then so as to avoid casualties and economic losses caused by karst collapse. Based on the results of regional geological survey, according to the geological conditions of karst collapse, 9 evaluation factors are selected including density of karst collapse, karst rock stratum type, the average rate of karst, soil thickness, soil structure, groundwater type, hydrous quality, fault density and land utilization, and the susceptibility evaluation prediction model is established. The analytic hierarchy process (AHP) is used to establish the weight of the evaluation factors. The evaluation factors are classified according to influence on karst collapse. Furthermore, the susceptibility of karst collapse in Guang-Fo-Zhao regions is evaluated. The results show that the high susceptibility areas are mainly distributed in Guanghua basin, Sanshui basin and Zhaoqing area karst area, which is 1,231.96 km2, accounting for 54.48% of the total area of karst. Human engineering activity is intense in this area. Medium susceptibility areas are accounting for 15.04% of the total karst area; low susceptibility areas are accounting for 30.48% of the total karst area. According to the karst collapse zoning susceptibility areas, the karst collapse susceptibility zoning atlas of major infrastructure has been compiled. The distribution of the highway, high speed railway, the oil pipeline, the gas line and other important infrastructure in the high susceptibility areas are counted.

     

  • [1]
    袁道先.新形势下我国岩溶研究面临的机遇和挑战[J].中国岩溶,2009,28(4):4-6.
    [2]
    雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J].中国地质灾害与防治学报,1998,9(3):1-6.
    [3]
    Cascini L.Risk assessment of fast landslide-from theory to practice[C]//General Report:Proceedings of the International Conference on"Fast Slope Movements-Prediction and Prevention for Risk Mitigation",2005(2):33-52.
    [4]
    Beck B F.On calculating the risk of sinkhole collapse.In:Kastning,E H,Kastning,K M(Eds.),Appalachian karst.Proceedings of the Appalachian Karst Symposium.National Speleological Society,Radford,Virginia,USA,1991:231-236.
    [5]
    Gutiérrez F,Guerrero J,Lucha P.Quantitative sinkhole hazard assessment.A case study from the Ebro Valley evaporite alluvial karst (NE Spain)[J].Natural Hazards,2008,45(2):211-233.
    [6]
    雷明堂,蒋小珍,李瑜.地理信息系统(GIS)技术在地质灾害信息管理系统中的应用:以桂林市岩溶塌陷信息系统为例[J].中国岩溶,1998,17(2):36-43.
    [7]
    戴建玲,雷明堂,蒋小珍.线性工程岩溶塌陷危险性评价研究[J].中国岩溶,2012,31(3):296-302.
    [8]
    蒙彦,雷明堂,贾龙.珠江三角洲地区岩溶塌陷地质灾害调查报告[R].桂林:中国地质科学院岩溶地质研究所,2016.
    [9]
    王忠忠.珠三角地区岩溶塌陷形成机理及易发性评价:以肇庆为例[J].土工基础,2015,29(4):90-93.
    [10]
    王恒恒,张发旺,郭纯青,等.基于层次分析法的城市岩溶塌陷危险性评价:以武汉市南部为例[J].中国岩溶,2016,35(6):667-673.
    [11]
    潘宗源,贾龙,刘宝臣.基于AHP和ArcGIS技术的岩溶塌陷风险评价:以遵义永乐镇为例[J].桂林理工大学学报,2016,36(3):464-470.
    [12]
    黄文龙.基于AHP—模糊综合评判的岩溶塌陷风险评价[J].地下水,2016,38(4):114-116.
    [13]
    蒋小珍,雷明堂,管振德.岩溶塌陷灾害的水动力条件危险性评价指标:以广西贵港青云村为例[J].地下空间与工程学报,2012,8(6):1316-1321.
    [14]
    潘健,周森,林培源,等.广州市白云区岩溶塌陷风险初探[J].岩土力学,2013,34(9):2589-2600.
    [15]
    徐贵来.武汉市覆盖层岩溶地面塌陷形成机理与危险性评价[D].武汉:中国地质大学,2016.
    [16]
    尹欧.大成桥岩溶塌陷成灾机制及易发性评价[D].长沙:中南大学,2014.
    [17]
    崔霖峰,陈邦松,涂婧,等.湖北武汉市典型地段岩溶塌陷风险评价[J].中国地质灾害与防治学报,2017,28(2):59-68.
    [18]
    杨荣康,杨元丽,蒋镇涛,等.基于两级模糊数学综合评判法的岩溶塌陷危险性评价:以安顺市中心城市规划区为例[J].贵州地质,2017,34(2):109-115.
    [19]
    武运泊,王运生,曹文正.基于AHP-模糊综合评判的岩溶塌陷危险性评价[J].中国地质灾害与防治学报,2015,26(1):43-48.
    [20]
    吴丽清,廖婧,王威,等.基于AHP-信息量法的武汉地区岩溶地面塌陷危险性评价[J/OL].长江科学院院报,2017,34(4):43-47.
    [21]
    贾龙,蒙彦,管振德.岩溶土洞演化及其数值模拟分析[J].中国岩溶,2014,33(3):294-298.
    [22]
    蒋小珍,雷明堂,管振德.单层土体结构岩溶土洞的形成机理[J].中国岩溶,2012,31(4):426-432.
    [23]
    袁道先.岩溶环境学[M].重庆:重庆出版社,1988:233-234.
    [24]
    陈国亮.岩溶地面塌陷的成因与防治[M].北京:中国铁道出版社,1994:62-68.
  • Relative Articles

    [1]SHI Hai, JIA Zhilei, BAI Mingzhou, ZHANG Ye, SUN Zibing. Study on the dynamics response characterstics of covered soil-cave type karst collapse under train vibration environment[J]. CARSOLOGICA SINICA, 2025, 44(2): 328-339. doi: 10.11932/karst20250210
    [2]LI Jingtian, ZHU Kai, XIAO Xianxuan, YIN Yan, LIU Hao, XU Mo, HE Zhipan. Development mechanism of covered karst collapses induced by groundwater drawdown[J]. CARSOLOGICA SINICA, 2024, 43(2): 406-420. doi: 10.11932/karst2024y010
    [3]ZHANG Hua, PENG Shuhui, WANG Yu, WANG Bo, GAO Yu, LI Qin. Analysis of geological problems and difficulties in restoration and treatment of karst environment on the Yunnan plateau[J]. CARSOLOGICA SINICA, 2024, 43(6): 1235-1247. doi: 10.11932/karst20240602
    [4]SHI Hai, JIA Zhilei, BAI Mingzhou, ZHANG Ye, SUN Zibing. Dynamic evolution characteristics of ground collapse of covered karst based on particle flow[J]. CARSOLOGICA SINICA, 2024, 43(5): 1110-1120. doi: 10.11932/karst20240509
    [5]ZHANG Jie, ZHANG Weifeng, WEI Lei, DAI Xusheng, ZHANG Wenjun. Study on distribution law of geological disasters in karst mountainous area of east Yunnan[J]. CARSOLOGICA SINICA, 2024, 43(6): 1350-1361. doi: 10.11932/karst20240612
    [6]LU Yulong, YE Gaofeng, YANG Xian, LU Zhilin, LIU Yang, ZHANG Lianzhi, LI Ganlong. Study on susceptibility of karst collapse based on normal cloud model in Yonghe town, Liuyang City[J]. CARSOLOGICA SINICA, 2023, 42(6): 1294-1302. doi: 10.11932/karst2023y027
    [7]WU Yuanbin, LIU Zhikui, YIN Renchao, LEI Mingtang, DAI Jianling, LUO Weiquan, PAN Zongyuan. Evaluation of karst collapse susceptibility in Huaihua area,Hunan Province based on AHP and GIS[J]. CARSOLOGICA SINICA, 2022, 41(1): 21-33. doi: 10.11932/karst2021y44
    [8]WANG Guilin, QIANG Zhuang, CAO Cong, CHEN Yao, HAO Jinyu. Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: An example of the Zhongliangshan area in Chongqing[J]. CARSOLOGICA SINICA, 2022, 41(1): 79-87. doi: 10.11932/karst2021y08
    [9]ZHANG Jie, BI Pan, WEI Aihua, TAO Zhibing, ZHU Huichao. Assessment of susceptibility to karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. CARSOLOGICA SINICA, 2021, 40(2): 215-220. doi: 10.11932/karst2021y07
    [10]WANG Yu, HUANG Cheng, ZHOU Cuiqiong, YANG Yingdong, XIAO Huazong, YAN Xiangsheng, ZHANG Lingze, WANG Yuqin. Review on the connotation and methods of emergency investigations to geological hazards in mountainous area[J]. CARSOLOGICA SINICA, 2020, 39(4): 492-499. doi: 10.11932/karst20200404
    [11]LUO Xiaojie, SHEN Jian. Research progress and prospect of karst ground collapse in China[J]. CARSOLOGICA SINICA, 2018, 37(1): 101-111. doi: 10.11932/karst20180106
    [12]JIANG Xiaozhen, LEI Mingtang. Monitoring technique and its application of karst groundwater-air pressure in karst collapse[J]. CARSOLOGICA SINICA, 2018, 37(5): 786-791. doi: 10.11932/karst20180517
    [13]LUO Xiaojie, ZHANG Sanding, SHEN Jian. Development characteristics of the epikarst zone in Wuhan area[J]. CARSOLOGICA SINICA, 2018, 37(5): 650-658. doi: 10.11932/karst20180502
    [14]WANG Xiaowei, ZHAO Zhiwei, CHEN Weiqing, ZHOU Shaozhi. Research on Groundwater Level Warning for karst collapse of covered karst areas in Tai’an City[J]. CARSOLOGICA SINICA, 2017, 36(6): 795-800. doi: 10.11932/karst2017y44
    [15]GAO Peide, WANG Linfeng. Analysis of collapse mechanism for mantled karst collapse[J]. CARSOLOGICA SINICA, 2017, 36(6): 770-776. doi: 10.11932/karst20170602
    [16]WU Xin, HUANG Jingjun, MIAO Shixian. Susceptibility zoning and mapping of karst collapse in Xuzhou using analytic hierarchy process-fuzzy comprehensive evaluation method[J]. CARSOLOGICA SINICA, 2017, 36(6): 836-841. doi: 10.11932/karst20170606
    [17]WANG Yan-ling. Research on influential factors of the karst collapse in the Tailai Basin of Shandong Province[J]. CARSOLOGICA SINICA, 2016, 35(1): 60-66. doi: 10.11932/karst20160109
    [18]LUO Xiao-jie, LUO Cheng. Comprehensive geological prediction and risk assessment of covered karst ground collapse[J]. CARSOLOGICA SINICA, 2016, 35(1): 51-59. doi: 10.11932/karst20160108
    [19]WEI Yong-yao, SUN Shu-lin, HUANG Jing-jun, JIANG Su, MIAO Shi-xian. Spatial-temporal distribution and causes of karst collapse in the Xuzhou area[J]. CARSOLOGICA SINICA, 2015, 34(1): 52-57. doi: 10.11932/karst20150107
    [20]CHANG Hong, ZHANG Yu, LI Jing-fu, TAN Jian-min, HAN Hui-qing. The relationship between karst formation and geological disasters in Qingjiang river basin, western Hubei Province[J]. CARSOLOGICA SINICA, 2014, 33(3): 288-293.
  • Cited by

    Periodical cited type(11)

    1. 李京天,朱凯,肖先煊,尹艳,刘皓,许模,何志攀. 水位下降诱发覆盖型岩溶塌陷发育机理. 中国岩溶. 2024(02): 406-420 . 本站查看
    2. 胡志林,肖先煊,许模,李兆峰. 车马碧引水隧洞近场区岩溶塌陷发育特征及成因机制. 地质灾害与环境保护. 2023(01): 8-18 .
    3. 吴远斌,刘之葵,殷仁朝,雷明堂,戴建玲,罗伟权,潘宗源. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价. 中国岩溶. 2022(01): 21-33 . 本站查看
    4. 周正,李大华,廖云平,林军志,张烨,陈洪凯,祁永爱,王贺. 重庆中梁山岩溶地面塌陷特征及形成机理. 中国岩溶. 2022(01): 67-78 . 本站查看
    5. 王桂林,强壮,曹聪,陈瑶,郝晋渝. 基于地理探测器与层次分析法的岩溶地面塌陷易发性评价——以重庆中梁山地区为例. 中国岩溶. 2022(01): 79-87 . 本站查看
    6. 张晨,盛灿,陈乐,赵菊花,苏昌. 应城市石膏矿区地面塌陷易发性评价. 资源环境与工程. 2022(04): 479-486 .
    7. 江思义,吴福,黄希明,李海良,何德顺. 基于专家-层次分析法的岩溶地面塌陷易发性评价——以广西平桂区为例. 矿产勘查. 2021(11): 2294-2302 .
    8. 魏国灵,金云龙,邱锦安,曾凡龙. 广东龙门县四围矿区岩溶发育规律及控制因素分析. 地下水. 2020(02): 17-19+58 .
    9. 赵魁. 基于ArcGIS平台的广东云浮云安区地质灾害危害程度分区评价. 中国地质灾害与防治学报. 2020(03): 89-95 .
    10. 吴亚楠,王延岭,周绍智,唐丽伟,焦玉国. 基于综合指数法的泰莱盆地岩溶塌陷风险性评价. 中国岩溶. 2020(03): 391-399 . 本站查看
    11. 苏丽薇. 广州从化鳌头帽子岭地区岩溶发育特征及地面稳定性分区研究. 珠江水运. 2019(11): 66-67 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2396) PDF downloads(759) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return