• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
YIN Chao, ZHOU Zhongfa, PAN Yanxi, ZHANG Jie, CAO Mingda, ZHANG Shaoyun. Environmental changes and their cause of the Zhijin cave in Guizhou Province[J]. CARSOLOGICA SINICA, 2017, 36(4): 591-597. doi: 10.11932/karst20170422
Citation: YIN Chao, ZHOU Zhongfa, PAN Yanxi, ZHANG Jie, CAO Mingda, ZHANG Shaoyun. Environmental changes and their cause of the Zhijin cave in Guizhou Province[J]. CARSOLOGICA SINICA, 2017, 36(4): 591-597. doi: 10.11932/karst20170422

Environmental changes and their cause of the Zhijin cave in Guizhou Province

doi: 10.11932/karst20170422
  • Publish Date: 2017-08-25
  • The Zhijin cave is located in the northeast of Zhijin county in western Guizhou Province. The area of Zhijin cave world geological park is 307 km2, and its central scenic spot lies at the intersection of the Liuchong river and Sancha river, where developed the Huangchun dam (T1y2) Formation of Lower Triassic Yelang Group (T1y). Because of the magnificent and unique landscape, the Zhijin cave has been honored with national geological park in 2004 and the world geological park in 2015. From January 2015 to May 2016, monthly monitoring has been conducted to the temperature, air CO2 concentration, air pressure, air humidity and wind speed in this cave. The cave air CO2 concentration was measured by Telaire7001 portable infrared CO2 instrument, of which the resolution and the range are 1 ppm and t 0-10,000 ppm, respectively. The humidity, temperature, air pressure of cave air and wind speed in the tunnel were observed by the Kestrel4500 anemometer. The data on visitor amount are provided by the Zhijin Cave Management Bureau. The previous research data are collected from the literature and compared with the new monitoring data point by point. Then this work analyzes the change of the environment and the number of tourists from the initial stage of opening of the Zhijin cave to the present and the relationship between the environment and the visitor amount and the influence of artificial light sources on the environment inside the cave. Thus the impact of human activities on environmental factors in the cave are quantified, and the main factors affecting the environment inside the cave are identified, which could provide a scientific basis for protection of the cave environment and landscape. The results show that the CO2 concentration and temperature level have been increased significantly since the initial stage of opening of the Zhijin cave, with amplitudes reaching 1,000 ppm and 2-3 ℃, respectively. The maximum CO2 difference was up to 465 ppm between 2011-2013 and 2015-2016. The main factors of the environmental change are tourism activities and artificial light. The amount of tourists has increased from less than 50 thousand in 1985 to 594.571 thousand in 2015, leading to increase of the CO2 concentration with time. The annual temperature difference was not large, but the overall trend was still decreasing year by year and the gap of humidity was not obviously except 2011. The maximum temperature difference between surrounding environment and artificial lights can reach 33 ℃, and the maximum humidity difference between the cave interior and surrounding environment is up to 66.7%.

     

  • [1]
    Milanolo S, Gabrovsek F. Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina[J]. Boundary-Layer Meteorology, 2009, 131(3):479-493.
    [2]
    Cigna A, Fort P. The environmental impact assessment of a tourist cave[C]//Kranjc A. Cave Tourism: Proceedings of International Symposium at 170-anniversary of Postojnska Jama, Postojna. Postojna: Centre of Scientific Research of the Sazu Institute for Karst Research and Postojnska Jama Tourist and Hotel Organization, 1988:29-38.
    [3]
    Baldini J U L, Baldini L M, Mcdermott F, et al. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland[J]. Journal of Cave & Karst Studies, 2006, 68(1):4-11.
    [4]
    袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988:315-319.
    [5]
    张英俊.应用岩溶学及洞穴学[M]. 贵阳:贵州人民出版社,1985:266-267.
    [6]
    杨晓霞, 施俊庄, 向旭,等. 浅议旅游洞穴灯光植物的危害及防治[J]. 中国岩溶, 2012, 31(4):433-440.
    [7]
    宋林华,韦小宁,梁福源.河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J].中国岩溶,2003,22(3): 230-235.
    [8]
    车家骧, 彭熙, 严忠海,等. 贵州龙宫风景名胜区水溶洞环境变化特征与预测研究[J]. 热带地理, 2012, 32(4):385-388.
    [9]
    张萍, 杨琰, 孙喆,等. 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J]. 环境科学, 2017,38(1):60-69.
    [10]
    贺卫.试论喀斯特洞穴若干环境因子与旅游活动[C]//宋林华,丁怀元,张发明.喀斯特与洞穴风景旅游资源研究[M].北京:地震出版社,1994:83-87.
    [11]
    汪训一,杨日英.旅游洞穴环境的变异与保护之研究[J].中国岩溶,1998,17(3):245-250.
    [12]
    胡希军,马永俊,朱丽东,等.旅游活动对溶洞环境、景观的影响和保护对策[J].浙江师范大学学报(自然科学版),2005,28(1):76-79.
    [13]
    施俊庄. 旅游洞穴灯光植物的危害与防治[D]. 重庆:西南大学, 2012.
    [14]
    熊康宁,朱文孝.织金洞地区的喀斯特地貌与洞穴成因[J].中国岩溶,1994,13(3):281-291.
    [15]
    韦跃龙,陈伟海,罗劬侃.贵州织金洞世界地质公园喀斯特景观特征及其形成演化分析[J].地球学报,2016,37(3):368-378.
    [16]
    贺卫,李坡,钱治,等.织金洞地质遗迹的开发保护与管理[M].贵阳:贵州人民出版社,2011:11.
    [17]
    安裕国,戍昆方,何复胜,等.岩溶洞穴沉积物生物成因初探:以贵州织金洞为例[J].贵州地质,1994,2(11):112-121.
    [18]
    朱文孝,李坡,潘高潮.织金洞的气候环境及空气中二氧化碳[J].中国岩溶,1993,12(4):409-417.
    [19]
    罗时琴,易武英,李坡.织金洞洞穴环境监测及其影响因素分析[J].贵州科学,2014,32(6):92-96.
    [20]
    罗时琴,吕文强,李安定,等.织金洞二氧化碳的变化规律及其影响因素分析[J].浙江农林大学学报,2015,32(2):291-297.
    [21]
    杨汉奎.旅游洞穴的开展与保护[G]//宋林华,丁怀元.喀斯特景观与洞穴旅游[M].北京:中国环境科学出版社,1993:160-165.
    [22]
    贺卫,李坡.织金洞发育特征及其科学价值[J].贵州科学,2016,34(2):31-36.
    [23]
    刘子琦.利用石笋记录探究贵州织金地区近百年气候环境变化[J].西南大学学报(自然科学版),2013,35(5):165-171.
  • Relative Articles

    [1]SHI Xiao, YANG Yan, LI Yidong, TIAN Ning, Ye Zhimao, LI Jiancang, DUAN Junwei. Analysis of temporal and spatial variations of CO2 migration in the soil cave system in karst critical zone:A case study of Jiguan cave, western Henan[J]. CARSOLOGICA SINICA, 2021, 40(4): 580-591.
    [2]TANG Yuntao, ZHOU Zhongfa, WANG Yanlin, ZHANG Jie, TIAN Zhonghui, XUE Bingqing. Seasonal variations and sources of dripping CO2 in karst caves: A case study of the Dafeng cave, Guizhou Province[J]. CARSOLOGICA SINICA, 2021, 40(3): 521-530.
    [3]WANG Quan, YUAN Shayue, ZHAI Xiumin, XIA Chengwei, LI Yi, LAN Jianghu. Reanalysis of interannual variability of precipitation δ18O in southern China in response to ENSO[J]. CARSOLOGICA SINICA, 2021, 40(6): 914-919. doi: 10.11932/karst20210602
    [4]WU Zeyan, LUO Weiqun, JIANG Zhongcheng, ZHANG Cheng, HU Zhaoxin, CAO Jianhua. Effects of filter sludge and organic manure soil improvement on soil hydrochemistry and net CO2 consumption of dissolution of carbonate rocks[J]. CARSOLOGICA SINICA, 2019, 38(1): 60-69. doi: 10.11932/karst20190107
    [5]SHAO Mingyu, ZHANG Liankai, LIU Pengyu, QIN Xiaoqun, SHAO Tianjie, CAO Jianhua, ZHANG Chunlai. Distribution characteristics and influencing factors of soil CO2 in different land use patterns in loess hilly region in summer[J]. CARSOLOGICA SINICA, 2019, 38(1): 70-79. doi: 10.11932/karst20190108
    [6]LUO Shuwen, YANG Tao, CHEN Weihai, DENG Yadong, PAN Xiaodong, CHEN Hongfeng, LI Chengzhan. Relationship between development of inclined karst cave and bedrock orientation in a monoclinal structure area[J]. CARSOLOGICA SINICA, 2018, 37(3): 433-439. doi: 10.11932/karst20180315
    [7]HUANG Binghui, LI Qiang, FANG Junjia, CAO Jianhua, JIN Zhenjiang, PENG Wenjie, LU Xiaoxuan, LIANG Yueming. Effects of CO2 concentration gradient on carbonicanhydrase of two karst microalgae[J]. CARSOLOGICA SINICA, 2018, 37(1): 91-100. doi: 10.11932/karst20180105
    [8]ZHANG Shao-yun, ZHOU Zhong-fa, ZHANG Qiang, XIE Ya-ting. Source of cave CO2 and its spatial attributive characteristics of Zhijin Cave in Guizhou Province[J]. CARSOLOGICA SINICA, 2016, 35(3): 307-313. doi: 10.11932/karst20160309
    [9]YIN Chao, ZHOU Zhong-fa, CAO Ming-da, ZHANG Jie, ZHANG Qiang, ZHANG Shao-yun, PAN Yan-xi. Analysis on the relationship between climatic and environmental factors in karst caves: An example from Zhijin Cave of Guizhou Province[J]. CARSOLOGICA SINICA, 2016, 35(4): 414-424. doi: 10.11932/karst20160409
    [10]WANG Jing-xia, LEI Lei, YU Qing-chun. Evaluation of capacity and suitability of CO2 geological storage in carbonate formations in basins of China mainland[J]. CARSOLOGICA SINICA, 2015, 34(2): 101-108. doi: 10.11932/karst20150202
    [11]Lan Fu-ning, Wang Wen-juan, Qin Xiao-qun, Huang Qi-bo, Liu Peng-yu, An Shu-qing, Tang Shao-Zheng. Impact on soil CO2 concentration by the changes of land use and vegetation cover in karst area[J]. CARSOLOGICA SINICA, 2011, 30(4): 449-455. doi: 10.3969/j.issn.1001-4810.2011.04.016
    [12]BAN Feng-mei, CAI Bing-gui. Research on seasonal variations of the air’s main environmental factors in the Shihua Cave, Beijing[J]. CARSOLOGICA SINICA, 2011, 30(2): 132-137. doi: 10.3969/j.issn.1001-4810.2011.02.003
    [13]LI Tao, CAO Jian-hua, ZHANG Mei-liang, HUANG Yan-mei, CHEN Jia-rui, YAN Yi-ping, LI Guang-chao, ZHU Xiao-yan. The seasonal variation of soil CO2 concentration in epikarst in the Panlong Cave, Guilin[J]. CARSOLOGICA SINICA, 2011, 30(3): 348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018
    [14]CAI Bing-gui, SHEN Lin-mei, ZHENG Wei, LI Ke-pu, BAI Yun-zhi, DONG Chun-zhi. Spatial distribution and diurnal variation in CO2 concentration, temperature and relative humidity of the cave air-A case study from Water Cave, Benxi, Liaoning, China[J]. CARSOLOGICA SINICA, 2009, 28(4): 348-354. doi: 10.3969/j.issn.1001-4810.2009.04.004
    [15]LIANG Fu-yuan, SONG Lin-hua, Tang Tao, Wang Jing. MICROBIAL PRODUCTION OF CO2 IN RED SOIL IN STONE FOREST NATIONAL PARK[J]. CARSOLOGICA SINICA, 2003, 22(1): 6-11. doi: 10.3969/j.issn.1001-4810.2003.01.002
    [16]YAN Zhi-wei, WEI Fu-cai. SUMMARY ON THE GENESIS OF CO2 IN GROUNDWATER[J]. CARSOLOGICA SINICA, 2003, 22(2): 118-123. doi: 10.3969/j.issn.1001-4810.2003.02.007
    [17]SONG Lin-hua, WEI Xiao-ning, LIANG Fu-yuan. EFFECT OF SPELEO-TOURISM ON THE CO2 CONTENT AND TEMPERATURE IN BAIYUN CAVE, LINCHENG, HEBEI[J]. CARSOLOGICA SINICA, 2003, 22(3): 230-235. doi: 10.3969/j.issn.1001-4810.2003.03.010
    [18]Song Linhua, Yang Jingrong, Lin Junshu, Wang Laihong. DYNAMICS OF ABSORBING CO2 IN THE RECOVERINGEXPERIMENT OF WEATHERED SPELEOTHEMIN YAOLIN CAVE, ZHEJIANG, CHINA[J]. CARSOLOGICA SINICA, 1999, 18(4): 297-307. doi: 10.3969/j.issn.1001-4810.1999.04.002
    [19]He Shiyi, Xu Shengyou, Zhang Meiliang. OBSERVATION ON SOLL CO2 CONCENTRATION,HYDROCHEMISTRY, AND THEIRRELATIONSHIP WITH KARST PROCESSES[J]. CARSOLOGICA SINICA, 1997, 16(4): 319-324.
    [20]Li Hongchun, Teh-Lung Ku, Lowell D. Sto t t, Yuan Daoxia n, Chen WenJi, Li Tieying. INTERANNUAL-RESOLUTIONδ13C RECORD OFSTALAGMITES AS PROXY FOR THE CHANGES INPRECIPITATION AND ATMOSPHERIC CO2IN SHIHUA CAVE, BEIJING[J]. CARSOLOGICA SINICA, 1997, 16(4): 285-295.
  • Cited by

    Periodical cited type(2)

    1. 程鹏翔,李宗发. 贵州武陵山区中二叠统崩塌地质灾害形成机理研究. 中国岩溶. 2019(04): 565-572 . 本站查看
    2. 刘子琦,李开萍. 贵州石漠化地区降雨期间洞穴CO_2变化特征与其影响因素——以石将军洞为例. 贵州师范大学学报(自然科学版). 2018(04): 13-17 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-072025-08051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.8 %FULLTEXT: 22.8 %META: 74.2 %META: 74.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.3 %其他: 12.3 %China: 0.8 %China: 0.8 %[]: 0.1 %[]: 0.1 %三亚: 0.1 %三亚: 0.1 %三明: 0.1 %三明: 0.1 %上海: 9.8 %上海: 9.8 %中卫: 1.8 %中卫: 1.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %佳木斯: 0.1 %佳木斯: 0.1 %六盘水: 0.1 %六盘水: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 7.8 %北京: 7.8 %十堰: 0.1 %十堰: 0.1 %南宁: 0.2 %南宁: 0.2 %南昌: 0.1 %南昌: 0.1 %吴忠: 0.1 %吴忠: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.1 %大庆: 0.1 %天津: 0.6 %天津: 0.6 %安康: 0.3 %安康: 0.3 %宣城: 0.4 %宣城: 0.4 %崇左: 0.4 %崇左: 0.4 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %庆阳: 0.1 %庆阳: 0.1 %德阳: 0.1 %德阳: 0.1 %恩施: 0.1 %恩施: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %昌吉: 0.1 %昌吉: 0.1 %晋城: 0.1 %晋城: 0.1 %来宾: 0.1 %来宾: 0.1 %杭州: 0.1 %杭州: 0.1 %柳州: 0.1 %柳州: 0.1 %株洲: 0.1 %株洲: 0.1 %武汉: 0.2 %武汉: 0.2 %汉中: 0.1 %汉中: 0.1 %泸州: 0.1 %泸州: 0.1 %济宁: 0.1 %济宁: 0.1 %海东: 0.1 %海东: 0.1 %海口: 0.2 %海口: 0.2 %淮北: 0.1 %淮北: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %珠海: 0.3 %珠海: 0.3 %石家庄: 0.4 %石家庄: 0.4 %纽约: 1.0 %纽约: 1.0 %绥化: 0.1 %绥化: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 0.9 %芒廷维尤: 0.9 %苏州: 0.2 %苏州: 0.2 %荆州: 0.1 %荆州: 0.1 %莱芜: 0.1 %莱芜: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 2.4 %西宁: 2.4 %西安: 0.1 %西安: 0.1 %贵阳: 0.9 %贵阳: 0.9 %赣州: 0.1 %赣州: 0.1 %运城: 0.1 %运城: 0.1 %遂宁: 0.1 %遂宁: 0.1 %郑州: 0.1 %郑州: 0.1 %鄂尔多斯: 0.1 %鄂尔多斯: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %银川: 0.3 %银川: 0.3 %长春: 0.2 %长春: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阳江: 0.1 %阳江: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %驻马店: 52.4 %驻马店: 52.4 %鸡西: 0.1 %鸡西: 0.1 %黔东南: 0.1 %黔东南: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他China[]三亚三明上海中卫中山临汾丹东丽水佳木斯六盘水加利福尼亚州北京十堰南宁南昌吴忠呼和浩特哈尔滨唐山嘉兴大庆天津安康宣城崇左巴音郭楞巴黎常州平顶山广州庆阳德阳恩施惠州成都扬州无锡昆明昌吉晋城来宾杭州柳州株洲武汉汉中泸州济宁海东海口淮北深圳温州湘潭珠海石家庄纽约绥化绵阳芒廷维尤苏州荆州莱芜蚌埠衡阳西宁西安贵阳赣州运城遂宁郑州鄂尔多斯鄂州重庆银川长春长沙长治阳江阳泉青岛马鞍山驻马店鸡西黔东南齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1849) PDF downloads(1026) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return