• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 36 Issue 4
Aug.  2017
Turn off MathJax
Article Contents
AN Xiaxia, YANG Guangbin, XU Yuanhong, CHEN Zhihu, ZHANG Kai, ZHANG Bin. Comparative of resident-information extraction accuracy from multi-scale remote sensing data in karst mountainous areas[J]. CARSOLOGICA SINICA, 2017, 36(4): 501-511. doi: 10.11932/karst20170411
Citation: AN Xiaxia, YANG Guangbin, XU Yuanhong, CHEN Zhihu, ZHANG Kai, ZHANG Bin. Comparative of resident-information extraction accuracy from multi-scale remote sensing data in karst mountainous areas[J]. CARSOLOGICA SINICA, 2017, 36(4): 501-511. doi: 10.11932/karst20170411

Comparative of resident-information extraction accuracy from multi-scale remote sensing data in karst mountainous areas

doi: 10.11932/karst20170411
  • Publish Date: 2017-08-25
  • Guizhou Province hosts a typical karst landform in China, where nearly 65% of the land is karst regions. It leads to the complexity, vulnerability and diversity of Guizhou’s ecological environment because of its unique mountainous plateau terrain and the existence of karst geological conditions. The spatial distribution of the karst mountainous areas is quite different from that of other plateaus mountainous areas, which seriously affects the survival and development of the mountainous residents. Therefore, studying the satellite images with suitable resolution in the karst areas to obtain the information of the residents is very significant. In this paper, the Qinglong county is selected as the study area. The county is under the jurisdiction of Qianxi’nan Prefecture, Guizhou Province. It is located in the middle of the Yunnan-Guizhou plateau and the west of the Miaoling mountains. The main karst forms include peak-cluster depression, sinkholes, dry gutters and karst caves in Qinglong. The author selected four different resolution images as the data source, which are Y3 image (2.1 m), sentinel-2 image(10 m), GF1 image(16 m) and Landsat8 image (30 m), respectively and extracted the residential area, township and rural regions of the study area using the object-oriented classification and human-computer interaction methods. Furthermore, the accuracy of the results that three kinds of residential information extracted from the four different resolution were compared with the geographical census data obtained from the 0.5 m resolution Pleiades image through visual interpretation and field verification. The results show that, (1) In the same resolution image, the extraction error of the urban residents is smaller than that of the rural residents. Among the different resolution images, the accuracy change of the resolution of urban residential areas is the smallest, which is 23.99%, whereas the accuracy change of the rural residential areas is the biggest, up to 35.3%; (2) The total commission errors of residential information increases rapidly from 2.1 m to 30 m resolution images, which are, in order, 2.56%, 15.58%,24.50%, 32.72%. The total omission errors in the urban residential areas are obviously smaller than that in the rural residential areas, and the most wrongly type divided into other classes in three residential areas is bare lands; (3) With the reduction of image resolution, the total omission errors of residential areas are 2.86%, 18.60%, 27.99%, 37.49%, respectively, among which non-central rural residential areas are more vulnerable to the environmental impact from their surroundings, and the total omission errors of residents increase significantly with the reduction of image resolution. The final results obtained are consistent with the conclusion that the spatial resolution of the satellite sensor is proportional to the spatial resolution of the satellite sensor.

     

  • loading
  • [1]
    Atkinson P M,Cuban P J.Choosing an appropriate spatial resolution for remote sensing Investigations [J].Photogrammetric Engineering and Remote Sensing,1997,63(12):1345-1351.
    [2]
    闵婕, 杨庆媛. 岩溶山区乡村聚落的格局特征及类型分析:以重庆市巫山县为例[J].中国岩溶, 2014, 33(1):99-109.
    [3]
    王发艳, 李阳兵. 红枫湖流域聚落空间格局特征及其影响因素分析[J]. 中国岩溶, 2014, 33(3):326-337.
    [4]
    杨山. 发达地区城乡聚落形态的信息提取与分形研究:以无锡市为例[J].地理学报,2000, 55(6): 671-678.
    [5]
    顾娟,陈军,张宏伟,等.基于遥感影像的居民地提取研究综述与展望[J].计算机工程与应用,2007,43(30): 1-4,10.
    [6]
    Henderson F M. An Analysis of Settlement Characterization in Central Europe Using SIR-B Radar Imagery [J]. Remote Sensing of Environment, 1995, 54(1): 61-70.
    [7]
    周晓芳,周永章.贵州典型喀斯特地貌区农村聚落空间分布研究:以清镇红枫区、毕节鸭池区和关岭—贞丰花江区为例[J]. 中国岩溶, 2011, 30(1):78-85.
    [8]
    郭晓娜, 苏维词, 李强,等. 基于 GIS 和 RS 的黔南喀斯特地区人居环境自然适应性评价[J]. 中国岩溶, 2016, 35(2):218-225.
    [9]
    任扬航, 马明国, 张霞,等. 典型喀斯特石漠化地区植被动态监测与土地利用变化的影响分析[J]. 中国岩溶, 2016,35(5):550-556.
    [10]
    杨存建,周成虎.TM影像的居民地信息提取方法研究[J].遥感学报,2000,4(2):146-150.
    [11]
    吴宏安, 蒋建军, 周杰, 等. 基于影象融合的干旱区城镇居民地信息提取研究[J]. 地理科学, 2006,26(4):477-482.
    [12]
    樊舒迪, 胡月明, 刘振华. 一种新的面向对象城市建筑物信息提取方法研究[J].华南师范大学学报 (自然科学版), 2015, 47(6): 91-97.
    [13]
    熊平生, 袁道先, 谢世友. 我国南方岩溶山区石漠化基本问题研究进展[J]. 中国岩溶, 2010, 29(4):355-362.
    [14]
    徐燕, 殷红梅. 贵州喀斯特地区旅游竞争力评价与对策研究[J]. 中国岩溶, 2009, 28(1):95-102.
    [15]
    苏旺德, 史正涛, 刘钢. 基于RS和GIS的南汀河流域石漠化评价[J]. 中国岩溶, 2015,34(6):594-601.
    [16]
    戴昌达,姜小光,唐伶俐.遥感图象应用处理与分析[M].北京:清华大学出版社,2004.
    [17]
    陈明,周伟,袁涛.GF-1影像质量评价及矿区土地利用分类潜力研究[J].测绘科学技术学报, 2015, 32(5): 494-499.
    [18]
    张森, 陈健飞,龚建周. 面向对象分类的决策树方法探讨:以Landsat-8OLI为例[J]. 测绘科学, 2016,41(6):1-8.
    [19]
    孙孝军.公路、铁路施工测量的实用计算器程序[J].测绘通报,2006(7):26-29.
    [20]
    周亦,张亚亚.利用eCognition进行高分一号卫星数据土地利用现状解译能力测试[J]. 测绘通报,2016(8):77-80,94.
    [21]
    张红梅,吴基文,刘星,等.特征提取和决策树法土地利用遥感分类[J].测绘科学,2014,39(10):53-56.
    [22]
    查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J].遥感学报,2003,7(1): 37-40.
    [23]
    李雪冬, 杨广斌, 周越,等. 基于3S技术的岩溶地区城市景观生态安全评价:以贵阳市为例[J]. 中国岩溶, 2016, 35(3):340-348.
    [24]
    GAO Mengxu, WANG Juanle, BAI Zhongqiang. Object-oriented Method for Rural Residential Land Extraction in the Hilly Areas of Southern China Using RapidEye Data [J]. Journal of Resources and Ecology, 2016, 7(4): 291-300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1652) PDF downloads(748) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return