Citation: | HE Ruoxue, SUN Ping’an, HE Shiyi, YU Shi, MO Jianying, QIN Xinxing, ZHANG Taicheng, GUO Yasi, ZHANG Tao. Variation of inorganic carbon flux in the middle and downstream of the Lijiang river[J]. CARSOLOGICA SINICA, 2017, 36(1): 109-118. doi: 10.11932/karst20170114 |
[1] |
Ciais P,Sabine C,Bala G,et al. Carbon and other biogeochemicalcycles[M]∥Stocker T F,Qin D,Plattner G K,et al.eds. Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and NewYork,NY,USA:Cambridge University Press,2013:465-570.
|
[2] |
蒲俊兵,蒋忠诚,袁道先,等. 岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J].地球科学进展,2015,30(10):1081-1090.
|
[3] |
刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(Z1):95-102.
|
[4] |
Berner R A,Lasaga A C,Garrels R. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years[J]. American Journat of Science,1983,289(7):641-683.
|
[5] |
Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987,287(5):401-428.
|
[6] |
章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶,2011,30(4):368-371.
|
[7] |
袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘,1997,4(1-2):17-25.
|
[8] |
Montety V D,Martin J B,Cohen M J,et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology,2011,283(1-2):31-43.
|
[9] |
Zhang Z C,Lian B,Hou W G,et al. Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase[J]. African Journal of Microbiology Research,2011,5(2):106-112.
|
[10] |
Probst J L,Mortatti L,Tardy Y. Carbon river fluxes and weathering CO2consumption in the Congon and Amazon river basins [J]. Applied Geochemistry,1994,9(1):1-13.
|
[11] |
于奭,杜文越,孙平安,等. 亚热带典型河流水化学特征、碳通量及影响因素[J] . 水文,2015,35(04):33-41.
|
[12] |
Martin J B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology,2017,449:58-72.
|
[13] |
Cai W J,Guo X H,Chen T,et al. A comparative overview of weathering in tensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang,Huanghe,Zhujiang(Pearl) and Mississippi rivers [J]. Continental Shelf Research,2008,28(12),1538-1549.
|
[14] |
Downing J P,Meybeck M,Orr J C,et al. Land and water interface zones[J]. Water,Air & Soil Pollution,1993,70(1):123-137.
|
[15] |
Yuan D X,Zhang C. Karst processes and the carbon cycle. In final report of IGCP 379[R]. Being: Geological Publishing House.2002.
|
[16] |
曹建华,杨慧,康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J]. 科学通报,2011,56(26):2181-2187.
|
[17] |
Haryono E,Danardono D,Mulatsih S,et al. The Nature of Carbon Flux in Gunungsewu Karst,Java-Indonesia[J]. Acta Carsologica,2016,45(2):173-185.
|
[18] |
Zhang C,Wang J,Yan J,et al. Diel cycling and flux of HCO3 in a typical karst spring-fed stream of southwestern China[J]. Acta Carsologica,2016,45(2):107-122.
|
[19] |
张红波,何师意,闫志为,等. 岩溶区河流洪水过程中的碳汇动态变化:以桂林漓江为例[J] . 桂林理工学院学报,2012,32(4):512-518.
|
[20] |
唐文魁,陶贞,高全洲,等. 桂江主要离子及溶解无机碳的生物地球化学过程[J]. 环境科学,2014,35(6):2099-2107.
|
[21] |
周秀平,黄伟军,王文圣. 桂江流域径流变化特性分析[J].广西水利水电,2008(1):22-25.
|
[22] |
Palmer A N.Dynamics of cave development by allogenic water[J].Speleogenesis & Evolution of Karst Aquifers,2003,1(1):14-32.
|
[23] |
Gaillardet J,Dupré B,Louvat P,et al. Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology,1999,159(1-4):3-30.
|
[24] |
Wigley T M L. WATSPEC:A computer program for determining equilibrium speciation of aqueous solutions[J]. London:British Geomorphological Research Group,1977:1-48.
|
[25] |
黄芬,唐伟,汪进良,等. 外源水对岩溶碳汇的影响:以桂林毛村地下河为例[J]. 中国岩溶,2011,30(4):417-421.
|
[26] |
原雅琼,何师意,于奭,等. 柳江流域柳州断面水化学特征及无机碳汇通量分析[J]. 环境科学,2015,36(7):2437-2445.
|
[27] |
Bouillon S ,Yambélé A ,Spencer R G M,et al. Organic matter sources,fluxes and greenhouse gas exchange in the Oubangui River(Congo River Basin)[J] . Biogeosciences Discussions,2012,9(6):63-108.
|
[28] |
刘丛强. 生物地球化学过程与地表物质循环:西南喀斯特流域侵蚀与生源要素循环[M]. 北京:科学出版社,2007:312.
|
[29] |
Li S L,Liu C Q,Li J,et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical kartic catchment of Southwest China:Isotopic and chemical constraints[J]. Chemical Geology,2010,277(3-4):301-309.
|
[30] |
姚小红,黄美元,高会旺,等. 沿海地区海盐和大气污染物反应的致酸作用[J]. 环境科学,1998,19(3):22-27.
|
[31] |
张红波,于奭,何师意,等. 桂林岩溶区大气降水的化学特征分析[J]. 中国岩溶,2012,31(3):289-295.
|
[32] |
沈照理,朱婉华,钟佐燊. 水文地球化学基础[M]. 北京:地质出版社,1993:68-69.
|
[33] |
刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学,2008,37(4):404-414.
|
[34] |
北村守次,曾毅强. 根据硫稳定同位素比值推断日本石川县降水中硫酸根离子的来源[J]. 地质地球化学,1995(6):48-56.
|
[35] |
Liu Z H ,Dreybrodt W,Wang H J. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99(3):162-172.
|
[36] |
李亮. 潮田河流域(岩溶)地质碳汇过程及通量估算研究[D]. 北京:中国地质科学院,2013.
|
[37] |
陈波,杨睿,刘再华,等. 水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J]. 地球化学,2014,43(4):375-385.
|
[38] |
孙平安,于奭,莫付珍,等. 不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J]. 环境科学,2016,37(1):123-131.
|
[39] |
郑洁. 水生植物生物地球化学行为对岩溶碳汇的影响研究[D].西南大学,2014.
|
[40] |
刘再华,吴孔运,汪进良,等. 非岩溶流水中碳酸盐岩试块的侵蚀速率及其控制因素:以湖南郴州礼家洞为例[J]. 地球化学,2006,35(1):103-110.
|
[41] |
Liu Z H,Dreybrod W. Dissolution kinetics of calcium carbonate minerals in H2OCO2 solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction H2O+CO2→H++HCO3[J]. Geochim Et Cosmochim Acta,1997,61(14):2879-2889.
|
[42] |
刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶,2000,19(4):293-300.
|