• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 36 Issue 1
Feb.  2017
Turn off MathJax
Article Contents
YU Qin, YANG Pingheng, WANG Changjiang, LI Guo, ZHANG Yu, ZHANG Mei, XIE Zhenglan. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. CARSOLOGICA SINICA, 2017, 36(1): 59-66. doi: 10.11932/karst20170107
Citation: YU Qin, YANG Pingheng, WANG Changjiang, LI Guo, ZHANG Yu, ZHANG Mei, XIE Zhenglan. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. CARSOLOGICA SINICA, 2017, 36(1): 59-66. doi: 10.11932/karst20170107

Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing

doi: 10.11932/karst20170107
  • Publish Date: 2017-02-25
  • The thermal reservoir temperature and the mixture of deep and shallow grounwater are discussed in this study, with the intention of providing a scientific basis for reasonable exploration, scientific evaluation and sustainable development and utilization of thermal water resources. Physical and chemical parameters of hot springs, karst groundwater and surface water in Tongjing, Chongqing were monitored and comparatively studied. Results show that the water chemistry of hot springs, the shallow karst water, and Wentang River belongs to type water of SO4-Ca·Mg, HCO3-Ca·Mg,and HCO3- Ca, respectively. Compared with the shallow karst groundwater and surface water, the higher values of TDS, Ca2+, Mg2+, SO42-, Si, B, and Sr are probably attributed to the runoff through the thermal reservoir formation and intense water-rock interaction. It was found that the methods of quartz without steam loss and modified SiO2 geothermometers rather than cationic and chalcedony geothermometers are more suitable for geothermometric calculation in Tongjing. An average reservoir temperature of 86 ℃ was estimated by the quartz without steam loss and modified SiO2 geothermometers. Based on the Na-K-Mg plot, the mixture of shallow karst water and thermal water occurred at deep aquifer. The mixture model and silicon-enthalpy diagram show that the ratios of mixture of cold water for the Yuanyang hot spring are 89% and 86%, respectively, and 80% and 79% for No.2 geothermal well water, respectively. The ratio of mixed cold water of No.2 geothermal well water is lower than that of the Yuanyang hot spring, probably because the No.2 geothermal well water is affected by the application of cement in the borehole wall protection.

     

  • loading
  • [1]
    罗祥康,曾云松,杨华林,等.重庆市中温地热资源研究报告[R].重市地矿局南江水文地质队,2010.
    [2]
    曾敏.重庆温泉分布与成因研究[D].成都:成都理工大学,2012.
    [3]
    程群,杨华林,曾敏.重庆市主城区岩溶地热水资源的形成与保护[J].中国岩溶,2015,34(3): 217-227.
    [4]
    Ellis A J,Mahon W A J.Geochemistry and geothermal systems[M].New York:Academic Press,1997:1-52.
    [5]
    Cartwright I, Weaver T R. Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability[J]. Hydrogeology Journal, 2005, 13(5-6): 752-770.
    [6]
    Tarcan G, Gemici . Water geochemistry of the Seferihisar geothermal area, Izmir, Turkey[J]. Journal of Volcanology and Geothermal Research, 2003, 126(3): 225-242.
    [7]
    Arnorsson S. Chemical equilibria in Icelandic geothermal systems—implications for chemical geothermometry investigations[J]. Geothermics, 1983, 12(2-3): 119-128.
    [8]
    Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J].Geothermics, 1977,5(1-4): 41-50.
    [9]
    Fournier R O, Truesdell A H. An empirical Na-K-Ca geothermometer for natural waters[J].Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.
    [10]
    Capasso G, D'Alessandro W, Favara R, et al. Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy)[J]. Journal of Volcanology and Geothermal Research, 2001, 108(1): 187-198.
    [11]
    Vengosh A, Helvacl C, Karamanderesi I H. Geochemical constraints for the origin of thermal waters from western Turkey[J]. Applied Geochemistry, 2002, 17(3): 163-183.
    [12]
    Ahmad M, Akram W, Ahmad N, et al. Assessment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope Geothermometry[J]. Geothermics,2002,31 (5):613-631.
    [13]
    肖琼.重庆三叠系碳酸盐岩热储成因与水-岩作用过程研究[D].重庆:西南大学,2012.
    [14]
    罗祥康.重庆市渝北区统景风景旅游区温泉的形成及其特征[J].中国岩溶,2000,19(2):159-163.
    [15]
    程群,刘邦显,林小松,等.重庆市渝北区统景温泉风景区地热资源调查评价报告[R].重庆南江地质队,2009.
    [16]
    储亮侪,周金生,董高翔,等. 地下水标准检验方法 [J].地质实验室,1988, 4(1):121-122.
    [17]
    Verma S P, Santoyo E. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection[J].Journal of Volcanology and Geothermal Research, 1997, 79(1-2): 9-23.
    [18]
    Giggenbach W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta, 1988, 52(12): 2749-2765.
    [19]
    杨雷.重庆温塘峡背斜地下热水水文地球化学特征研究[D].重庆:西南大学,2012.
    [20]
    Han D M, Liang X, Jin M G,et al. Evalution of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems,Xinzhou Basin[J]. Journal of Volcanology and Geothermal Research,2010,189(1):92-104.
    [21]
    汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993,135-140.
    [22]
    Ahmad M, Akram W,Ahmad N, et al. Assessment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope Geothermometry[J]. Geothermics,2002,31 (5):613-631.
    [23]
    Edmunds W M, Guendouz A H, Mamou A, et al. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators[J]. Applied Geochemistry, 2003, 18(6): 805-822.
    [24]
    M?ller P, Rosenthal E, Geyer S, et al. Chemical evolution of saline waters in the Jordan-Dead Sea transform and in adjoining areas[J]. International Journal of Earth Sciences, 2007, 96(3): 541-566.
    [25]
    邱述兰,蒋勇军,张兴波,等.重庆市青木关地下河水化学及其δ13CDIC变化特征[J]. 中国岩溶, 2012,31(3):279-288.
    [26]
    Portugal E, Birkle P, Tello E, et al. Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Vírgenes geothermal field, Baja California Sur, México[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3): 223-244.
    [27]
    杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下河示踪试验中的应用:以青木关地下河系统岩口落水洞至姜家泉段为例[J]. 中国岩溶,2008,27(3):215-220.
    [28]
    何守阳,朱立军,董志芬,等.典型岩溶地下水系统地球化学敏感性研究[J].环境科学,2010,31(5)1176-1182.
    [29]
    许世光,郭远生.地热学基础[M].北京:科学出版社,2009.
    [30]
    Fournier R O. A method of calculating quartz solubilities in aqueous sodium chloride solutions[J]. Geochim Cosmochim Acta, 1983,47(3):579-586.
    [31]
    罗祥康,曾云松,杨华林.重庆市渝北区统景镇地热水资源调查评价报告[R].重庆市地勘局南江水文地质工程地质队,2008.
    [32]
    Han D M, Liang X, Jin M G,et al. Evalution of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin[J]. Journal of Volcanology and Geothermal Research,2010,189(1):92-104.
    [33]
    周训,金晓媚,梁四海,等.地下水科学专论[M].北京:地质出版社,2010:71-72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2447) PDF downloads(1054) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return