• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
CUI Guyue, YANG Xunlin, FANG Moqin, SUN Xili, SHI Zhichao, WANG Baoyan. Climatic implications of stalagmite grey scale sequence during the Early Holocene from the Yangkou cave, Chongqing[J]. CARSOLOGICA SINICA, 2017, 36(2): 171-178. doi: 10.11932/karst20170203
Citation: HU Ning, MA Zhimin, LAN Jiacheng, WU Yuchun, FU Wali, YUAN Hong, LOU Luling. Leaf litter decomposition characters and impact on soil organic carbon/nitrogen in different vegetation restorations of karst rocky desertification: An example of the Zhongliang mountain in Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(5): 539-549. doi: 10.11932/karst20160510

Leaf litter decomposition characters and impact on soil organic carbon/nitrogen in different vegetation restorations of karst rocky desertification: An example of the Zhongliang mountain in Chongqing

doi: 10.11932/karst20160510
  • Publish Date: 2016-10-25
  • Restoring vegetation and improving soil quality is key to the control of rocky desertification. Soil organic carbon/nitrogen is not only the key component of soil quality, but also the basic role in the soil fertility system. In this study the Shiqing village in Nanchuan, a typical man-made vegetation restoration base, and the Zhongliang mountain in Beibei, a typical natural vegetation restoration pattern, were chosen as the study sites. In these areas, some typical sample plots were selected based on the field investigation and leaf litter of dominant plant species was collected. Then the treated leaf litter was filled into litter bags and was buried in the respective sample plots. At the same time, some 0-10 cm layered soil samples were collected in the vicinity of buried litter bag site in every experimental plot. In order to probe into leaf litter decomposition characters in the process of vegetation recovery, and the impact of leaf litter decay on soil organic carbon/nitrogen accumulation and nitrogen supply in karst rocky desertification areas, leaf litter decomposition rate of dominant plant species and organic carbon/nitrogen release rate were examined using the litter bag burying method, and the correlation between leaf litter decomposition and soil organic/nitrogen was analyzed in this study. On the basis of this analysis, this work discussed the key aggregate-size in the process of organic/nitrogen accumulation. The main results are as follows, the coefficient k of leaf litter decomposition varies from 0.73 to 1.33. On different sampling lands, the k value shows a tendency of grass land < brush land < arbor land < brush-arbor land .The k value of Cinnamomum camphora tree land is greater than arbor land and less than shrub-arbor land. With the extension of vegetation recovery, leaf litter decomposition rate increases. At the same time, organic carbon of leaf litter shows a releasing status during the decomposition period; and the release rate of organic carbon varies in 58.5%-72.9%, while the release rate of organic nitrogen varies in 21.2%-63.9%. The study results also show that the leaf litter decomposition rate and organic carbon/nitrogen release rates are controlled mainly by the initial nitrogen content and C/N ratio of leaf litter. Furthermore, there is a significantly positive relationship between the leaf litter decomposition rate and the light fraction organic carbon/nitrogen contents of the soil aggregate of 0.25-1 mm and <0.25 mm classes. Accordingly, the light fraction organic carbon/nitrogen is preference of the process to smaller aggregate-sizes in the leaf litter decomposition period. So in the process of accumulation, active organic carbon and nitrogen are in superior to the smaller sizes of aggregate, and the smaller size aggregates play an important role in this process. Therefore, the leaf litter decomposition is an important role in the vegetation recovery process. On one hand, the litter decomposition could provide nutrients for plant growth; on the other hand, it could promote the formation and accumulation of soil organic matters. In the process of vegetation succession, the work of soil and water conservation should be strengthened, so as to improve the capacity of absorption and storage of soil nutrients.

     

  • [1]
    Polyakova O, Billor N.Impact of deciduous tree species on litter fall quality,decomposition rates and nutrient circulation in pine stands[J].Forest Ecology and Management,2007,253(1-3):11-18.
    [2]
    Wang Q K, Wang S L, Huang Y. Comparisons of litter fall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China[J]. Forest Ecology and Management, 2008,255(3-4):1210-1218.
    [3]
    Nave L E, Vance E D, Swanston C W, et al. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization.[J]. Geoderma,2009,153(1-2):231-240.
    [4]
    Szanser M, Ilieva-Makulec K, Kajak A, et al. Impact of litter species diversity on decomposition processes and communities of soil organisms[J]. Soil Biology and Biochemistry,2011,43(1):9-19.
    [5]
    杨玉盛,郭剑芬,林鹏,等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.
    [6]
    Vitousek P M, Turner D R, Parton W J, et al. Litter Decomposition on the Mauna Loa Environmental Matrix, Hawai’i: Patterns, Mechanisms, and Models[J]. Ecology, 1994, 75(2):418-429.
    [7]
    王景燕,胡庭兴,龚伟,等.天然林人工更新后枯落物对土壤微生物数量及有效养分含量的影响[J].四川农业大学学报,2010,28(3):285-290.
    [8]
    葛晓改,肖文发,曾立雄,等.不同林龄马尾松凋落物基质质量与土壤养分的关系[J].生态学报,2012,32(3):852-862.
    [9]
    蓝家程,傅瓦利,袁波,等.岩溶山区土地利用方式对土壤活性有机碳及其分布的影响[J]. 中国岩溶,2011,30(2):175-180.
    [10]
    侯玲玲,毛子军,孙涛,等.小兴安岭十种典型森林群落凋落物生物量及其动态变化[J].生态学报,2013,33(6):1994-2002.
    [11]
    陈强,赵雨森,辛颖,等.大兴安岭北坡火烧迹地植被恢复后枯落物与土壤持水能力研究[J].土壤通报,2013,44(2):308-313.
    [12]
    李海涛,于贵瑞,李家永,等.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放[J].生态学报,2007,27(3):898-908.
    [13]
    季晓燕,江洪,洪江华,等.模拟酸雨对亚热带三个树种凋落叶分解速率及分解酶活性的影响[J].环境科学学报,2013,33(7):2027-2035.
    [14]
    武启骞,吴福忠,杨万勤,等.季节性雪被对高山森林凋落物分解的影响[J]. 植物生态学报,2013,37(4):296-305.
    [15]
    史学军,潘剑君,陈锦盈,等.不同类型凋落物对土壤有机碳矿化的影响[J]. 环境科学,2009,30(6):1832-1837.
    [16]
    宋影,辜夕容,严海元,等.中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J].环境科学,2014,35(3):1151-1158.
    [17]
    俞国松,王世杰,容丽,等.茂兰喀斯特森林主要演替群落的凋落物动态[J]. 植物生态学报,2011,35(10):1019-1028.
    [18]
    黄宗胜,符裕红,喻理飞.喀斯特森林植被自然恢复中凋落物现存量及其碳库特征演化[J].林业科学研究,2013,26(1):8-14.
    [19]
    贾红杰,傅瓦利,甄晓君,等.岩溶山区不同利用方式下土地蓄水能力研究:以重庆市中梁山为例[J].中国岩溶,2007,26(4):304-309.
    [20]
    曾昭霞,王克林,曾馥平,等.桂西北喀斯特区原生林与次生林凋落叶降解和养分释放[J].生态学报,2012,32(9):2720-2728.
    [21]
    曾昭霞,王克林,刘孝利,等.桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J].植物生态学报,2015,39(7):682-693.
    [22]
    胡宁,马志敏,蓝家程,等.石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J].环境科学,2015,36(9):3411-3421.
    [23]
    中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978.
    [24]
    Bhogal A, Hatch D J, Shepherd M A, et al. Comparison of methodologies for field measurement of net nitrogen mineralization in arable soils [J]. Plant and Soil,1999,207(1):15-28.
    [25]
    Hatch D J, Bhogal A, Lovell R D, et al. Comparisons of different methodologies for field measurement of net nitrogen mineralization in pasture soils under different soil conditions [J]. Biology and Fertility of Soils,2000,32(4):287-293.
    [26]
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [27]
    马志良,高顺,杨万勤,等.亚热带常绿阔叶林6个常见树种凋落叶在不同降雨期的分解特征[J].生态学报,2015,35(22):7553-7561.
    [28]
    Olson J S.Energy Storage and the Balance of Producers and Decomposers in Ecological Systems[J].Ecology,1963,44(2):322-331.
    [29]
    刘忠宽,汪诗平,韩建国,等.内蒙古温带典型草原植物凋落物和根系的分解及养分动态的研究[J].草业学报,2005,14(1):24-30.
    [30]
    曲浩,赵学勇,赵哈林,等.科尔沁沙地3种灌木凋落物分解速率及其与关键气象因子的关系[J].中国沙漠,2010,30(4):844-849.
    [31]
    Yang X, Chen J. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China[J]. Soil Biology and Biochemistry, 2009,41(5):910-918.
    [32]
    胡宁,袁红,蓝家程,等.岩溶石漠化区不同植被恢复模式土壤无机磷形态特征及影响因素[J].生态学报,2014,34(24):7393-7402.
    [33]
    曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019.
    [34]
    杨继松,刘景双,于君宝,等.三江平原沼泽湿地枯落物分解及其营养动态[J].生态学报,2006,26(5):1297-1302.
    [35]
    Kchy M, Wilson S D.Litter Decomposition and Nitrogen Dynamics in Aspen Forest and Mixed-Grass Prairie[J]. Ecology,1997, 78(3):732-739.
    [36]
    赵其国,王明珠.我国热带亚热带森林凋落物及其对土壤的影响[J].土壤,1991, 23(1):8-15.
    [37]
    Gerzabek M H, Haberhauer G, Kirchmann H. Soil organic matter pools and carbon-13 natural abundance in particle-size fractions of along-term agricultural field experiment receiving organic amendments [J]. Soil Science Society of America Journal,2001,65(2): 352-358.
    [38]
    Razafimbelo T M, Albrecht A, Oliver R, et al. Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems[J]. Soil and Tillage Research,2008,98(2):140-149.
    [39]
    邱莉萍,张兴昌,张晋爱.黄土高原长期培肥土壤团聚体中养分和酶的分布[J].生态学报,2006,26(2):364-372.
    [40]
    Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2):141-163.
  • Relative Articles

    [1]ZHOU Wei, JIANG Xia, YAO Shiju, ZHANG Yan. Characteristics of soil carbon, nitrogen and their components under different vegetation types in the karst reservoir area: A case study of Huaxi reservoir in Guiyang[J]. CARSOLOGICA SINICA, 2024, 43(3): 640-649. doi: 10.11932/karst2024y030
    [2]DUAN Huachao, ZHENG Xinhua, LI Shimin, LI Yanyan, YE Lan, JING Huizhu, LUO Runwen, TANG Yong, DONG Qiong. Vegetation restoration model and suggestions on its optimization in rocky desertification areas of Yunnan Province[J]. CARSOLOGICA SINICA, 2024, 43(1): 137-146. doi: 10.11932/karst2021y13
    [3]HU Lin'an, QIU Jiangmei, LI Qiang. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus in different stages of vegetation succession at karst graben basin of Yunnan Province, China[J]. CARSOLOGICA SINICA, 2023, 42(6): 1213-1223. doi: 10.11932/karst20230607
    [4]YUE Xiangfei, LI Yanqing, LIU Peng. Stoichiometric characteristics of C, N and P in soil and litter of shrublands in karst areas of Guangxi[J]. CARSOLOGICA SINICA, 2023, 42(5): 1106-1116. doi: 10.11932/karst2023y032
    [5]LAN Jiacheng, WANG Junxian, WANG Shasha, QI Xue, LONG Qixia. Impact of controlling karst rocky desertification on soil particulate organic carbon and aggregate-associated organic carbon[J]. CARSOLOGICA SINICA, 2022, 41(5): 773-783. doi: 10.11932/karst20220509
    [6]CHEN Hai, ZHU Dayun, CHEN Hu. Effects of land-use patterns on soil aggregate stability and organic carbon in rocky desertification areas[J]. CARSOLOGICA SINICA, 2021, 40(2): 346-354. doi: 10.11932/karst20210211
    [7]ZENG Faming, WU Zeyan, ZHANG Cheng, YANG Qiyong. Carbon sink in rocky desertification restoration, Southwest China: A case of the peak-cluster depression areas[J]. CARSOLOGICA SINICA, 2018, 37(1): 67-73. doi: 10.11932/karst20180103
    [8]TU Chunyan, HUANG Binghui, YANG Hui, BAI Bing, MO Biqin, CAO Jianhua. Study on leaf litter decomposition of Loropetalum chinense and Pinus massoniana in karst areas and clastic rock areas in Maocun, Guilin[J]. CARSOLOGICA SINICA, 2018, 37(3): 379-387. doi: 10.11932/karst20180308
    [9]DING Chang-huan, CI En, SHAO Jing-an, GAO Yan-hong, WANG Lian-ge, XIE De-ti. Dynamics of soil organic carbon in cropland of karst regions in western Guizhou Province during last 30 years: A case study of Puding county, Guizhou Province[J]. CARSOLOGICA SINICA, 2015, 34(3): 281-291. doi: 10.11932/karst201504Y01
    [10]YAN Ning-zhen, CHENG Yong-yi, YANG Jian-hong, QU Ming. Distribution and impact factor of soil organic carbon on topsoil in karst mountain:A case study of Beibei District of Chongqing[J]. CARSOLOGICA SINICA, 2013, 32(3): 292-298. doi: 10.3969/j.issn.1001-4810.2013.03.007
    [11]WEI Xinghu, XU Xizhen, LEI Li, ZHOU Hongyan, LI Zhongyun. The effect of rocky desertification on the soil’s organic carbon storage in karst peak cluster: A case study in Yanbei town, Yingde City, Guangdong Province[J]. CARSOLOGICA SINICA, 2013, 32(4): 371-376.
    [12]YAN Ning-zhen, YANG Jian-hong, QU Ming, BAI Zhong-cai, XU Wei-hong. Influences of land use patterns on spatial-temporal distribution of soil organic carbon in Southeast Chongqing karst mountain[J]. CARSOLOGICA SINICA, 2012, 31(1): 36-39. doi: 10.3969/j.issn.1001-4810.2012.01.007
    [13]CHEN Hu, WANG Jia-xue, HU Can-can, MA Zhao-lun. Three Gorges reservoir area Organic matter content of the bare lateritic surface-layer in east Yunnan karst rocky deserts[J]. CARSOLOGICA SINICA, 2012, 31(4): 423-425. doi: 10.3969/j.issn.1001-4810.2012.04.011
    [14]CHEN Wei-jie, REN Xiao-dong, XIONG Kang-ning. Analysis on carbon fixation potentiality of rocky desert land— A case in Guizhou[J]. CARSOLOGICA SINICA, 2011, 30(2): 163-168. doi: 10.3969/j.issn.1001-4810.2011.02.007
    [15]SHI Ting-ting, CHEN Zhi-hua, WANG Ning-tao, JIN Xiao-wen. Spatial correlation analysis on soil organic carbon and the influencing factors in the Xiangxi River Basin[J]. CARSOLOGICA SINICA, 2011, 30(4): 423-431.
    [16]Yang Hui, Zhang Lian-kai, Cao Jian-hua, Yu Shi. Comparison of mineralization and chemical structure of the soil organic carbon under different land uses in Maocun karst area, Guilin[J]. CARSOLOGICA SINICA, 2011, 30(4): 410-416. doi: 10.3969/j.issn.1001-4810.2011.04.010
    [17]XIONG Kang-ning, ZHOU Wen-long, LONG Jian, LUO Jing-sheng. Spatial-temporal dynamic features and tendency of the topsoil organic carbon in integrated rehabilitating karst rocky desert[J]. CARSOLOGICA SINICA, 2011, 30(4): 383-390. doi: 10.3969/j.issn.1001-4810.2011.04.006
    [18]LIU Fang, WANG Shi-jie, LIU Xiu-ming, PU Tong-da, CNEN Zu-yong. Changes of organic C, N and P in rhizosphere soil under various dominant tree species in karst rocky desertification area[J]. CARSOLOGICA SINICA, 2011, 30(1): 59-65. doi: 10.3969/j.issn.1001-4810.2011.01.010
    [19]LIAO Hong-kai, LONG Jian, LI Juan, YANG Jiang-jiang, FENG Ye-qiang. Preliminary study on spatial heterogeneity of soil mineral composition and organic carbon content at different micro-habitats that under different vegetation types in karst region[J]. CARSOLOGICA SINICA, 2010, 29(4): 434-439. doi: 10.3969/j.issn.1001-4810.2010.04.014
    [20]DUAN Zheng-feng, FU Wa-li, ZHEN Xiao-jun, DU Fu-zhi. Correlation between soil organic carbon and water-stable aggregate in karst area——A case study in Zhongliangshan karst valley, Chongqing[J]. CARSOLOGICA SINICA, 2009, 28(1).
  • Cited by

    Periodical cited type(13)

    1. 兰梦杰,王邵军,李瑞,罗双,夏佳慧,杨胜秋,郭晓飞,解玲玲,肖博,王郑钧,郭志鹏. 丛枝菌根真菌接种介导石漠化植物-土壤性质变化对氮积累时空分布的影响. 生态学报. 2025(01): 112-127 .
    2. 邬瑞鑫,蒙仲举,万芳. 荒漠草原不同围封措施下羊草枯落物分解及养分释放特征. 林草资源研究. 2024(03): 51-59 .
    3. 李思瑶,夏晓莹,王杰,马小龙,米尔扎提·柯尼加里木,阿丽耶·麦麦提,王卫霞. 天山云杉林土壤有机碳密度及影响因素研究. 防护林科技. 2023(03): 48-51 .
    4. 巢林,李忠国,莫珍珍,黄慧莲,王爱华,张建兵,胡宝清,刘艳艳. 南亚热带不同菌根类型树种叶凋落物化学性质. 中国岩溶. 2023(03): 472-481 . 本站查看
    5. 王邵军,左倩倩,曹乾斌,王平,杨波,赵爽,陈闽昆. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应. 南京林业大学学报(自然科学版). 2022(01): 7-14 .
    6. 殷婕,盛茂银,王霖娇. 中国陆地生态系统植硅体碳汇潜力估算研究进展. 贵州师范大学学报(自然科学版). 2022(02): 27-33+80 .
    7. 王昭懿,柳鑫,陈超,张乾,王吉高,金宝成,赵学春. 岩溶地区草地凋落物对石漠化的响应. 应用与环境生物学报. 2022(03): 736-741 .
    8. 蒙仲举,万芳. 封育措施下荒漠草原不同枯落物分解特征. 水土保持学报. 2021(01): 319-325 .
    9. 王利彦,周国娜,朱新玉,高宝嘉,许会道. 凋落物对土壤有机碳与微生物功能多样性的影响. 生态学报. 2021(07): 2709-2718 .
    10. 李青桦,张玉,林玉瑄,王志宇,杨玉婷,谭波,徐振锋,李晗. 西南地区不同林型凋落物-土壤氮、磷含量分布特征. 四川农业大学学报. 2021(03): 341-347 .
    11. 段斐,方江平,周晨霓. 西藏原始暗针叶林凋落物有机碳释放特征与土壤有机碳库关系研究. 水土保持学报. 2020(03): 349-355 .
    12. 涂春艳,黄炳惠,杨慧,白冰,莫碧琴,曹建华. 桂林毛村岩溶区与碎屑岩区檵木和马尾松凋落叶分解研究. 中国岩溶. 2018(03): 379-387 . 本站查看
    13. 裴蓓,高国荣. 凋落物分解对森林土壤碳库影响的研究进展. 中国农学通报. 2018(26): 58-64 .

    Other cited types(20)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1680) PDF downloads(1120) Cited by(33)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return