Citation: | LI Qiang, JIN Zhen-jiang. Perspectives on karst biogeochemistry[J]. CARSOLOGICA SINICA, 2016, 35(4): 349-356. doi: 10.11932/karst20160401 |
[1] |
袁道先,刘再华等著.碳循环与岩溶地质环境[M].北京:科学出版社,2003:1-240.
|
[2] |
刘再华,Wolfgang Dreybrodt等著.岩溶作用动力学与环境[M]. 北京:地质出版社,2007:1-237.
|
[3] |
Vernadsky V I L. Biogeochemie[M]. Paris: Sorbonne, 1926:456.
|
[4] |
刘志刚.广西都安县石灰岩地区土壤侵蚀的特点和水土保持工作的意见[J].林业科学,1963, 8(4): 354-360.
|
[5] |
Jones R I. Aspects of the biological weathering of limestone pavements[J]. Proceedings of Geologists’ Association, 1965, 76: 421-434.
|
[6] |
Gosden M S. Peat Deposits of Scar Close Ingleborough, York-shire[J]. Journal of Ecology, 1968, 56: 345-353.
|
[7] |
Li Q, Li Z Y, Liang J H, et al. δ13C Characteristics of Soil Organic Carbon in Hilly Karst Area[J]. Polish Journal of Environmental Studies, 2014, 23(6): 2345-2349.
|
[8] |
罗绪强,王世杰,张桂玲,等. 喀斯特石漠化过程中地表凋落物δ15N特征[J].矿物岩石地球化学通报,2014,33(2):214-220.
|
[9] |
魏兴萍. 基于同位素法监测岩溶槽谷区山坡土壤侵蚀和养分流失[J]. 农业工程学报,2013,29(22):128-136.
|
[10] |
盛茂银,刘洋,熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报,2013,33(19):6303-6313.
|
[11] |
Hall K, Arocena J M, Boelhouwers J, et al. The influence of aspect on the biological weathering of granites: observations from the Kunlun Mountains, China[J]. Geomorphology, 2005, 67(1):171-188.
|
[12] |
Sabbioni C, Zappia G. Oxalate patinas on ancient monuments: the biological hypothesis[J]. Aerobiologia, 1991, 7(1): 31-37.
|
[13] |
Xiao L, Hao J, Wang W, et al. The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014,31(7), 632-641.
|
[14] |
Xiao L, Lian B, Hao J, et al. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values[J]. Scientific reports, 2015, 5, 7733,1-10.
|
[15] |
Li Q, He Y Y, Li Z Y.The promoting effect of soil carbonic anhydrase on the limestone dissolution rate in SW China[J].Carbonates and Evaporites,2015,DOI 10.1007/s13146-015-0281-2.
|
[16] |
Cunningham K I, Northup D E, Pollastro R M, et al. Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico[J]. Environmental Geology, 1995, 25(1): 2-8.
|
[17] |
Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science & Technology, 2010, 44(1):15-23.
|
[18] |
朱立军,李景阳. 碳酸盐岩红色风化壳中的氧化铁矿物[J]. 地质科学,2001,36(4):395-401.
|
[19] |
Liu D, Dong H, Bishop M E, et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri[J]. Geochim Cosmochim Acta, 2011, 75: 1057-1071.
|
[20] |
Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate reducing bacterium[J]. Geobiology, 2012, 10: 150-162.
|
[21] |
Barker W W, Welch S A, Chu S, et al. Experimental observations of the effects of bacteria on aluminosilicate weathering[J]. Am Miner, 1998, 83:1551-1563.
|
[22] |
韩作振,陈吉涛,迟乃杰,等.微生物碳酸盐岩研究:回顾与展望[J].海洋地质与第四纪地质,2009,29(4):29-38
|
[23] |
Ebelmen J J. Sur les produits de la décomposition des espèces minérales de la famille des silicates[J]. Annales des Mines, 1945, 7: 3-66.
|
[24] |
Jakucs L, Jakucs L. Morphogenetics of karst regions[M]. Wiley,1977.
|
[25] |
姚凯, 刘映良, 黄俊学. 喀斯特地区植物根系对土壤元素迁移的影响[J]. 东北林业大学学报, 2011, 39(3):81-82.
|
[26] |
李强,孙海龙,何师意,等.桂林岩溶试验场植物多样性恢复及其水、气效应[J].热带地理,2005, 25(1):5-9.
|
[27] |
Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus (Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase) [J]. Plant Physiol, 1996, 112: 31-41.
|
[28] |
李植斌. 论土壤生物对喀斯特发育的作用[J]. 衡阳师专学报(自然科学),1987,6(2):16-21.
|
[29] |
Remy W, Taylor T N, Hass H, et al. Four hundred-million-year-old vesicular arbuscular mycorrhizae[J]. Proceedings of the National Academy of Sciences, 1994, 91(25):11841-11843.
|
[30] |
Glowa K R, Arocena J M, Masssicotte H B. Extraction of potassium and/or magnesium from selected soil minerals by Piloderma[J]. Geomicrobidogy, 2003, 20: 99-111.
|
[31] |
Kolo K, Claeys P. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater[J]. Biogeosciences, 2005, 2: 277-293.
|
[32] |
Taylor L L, Leake J R, Quirk J, et al. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm[J]. Geobiology, 2009, 7: 171-219.
|
[33] |
Dijkstra F A, Breemen N V, Jongmans A G, et al. Calcium weathering in forested soils and the effect of different tree species[J]. Biogeochemistry, 2003, 62(3):253-275.
|
[34] |
刘丛强等著.生物地球化学过程与地表物质循环—西南喀斯特土壤—植被系统生源要素循环[M].北京:科学出版社,2009:1-618.
|
[35] |
Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3):593-608.
|
[36] |
刘丛强等著.生物地球化学过程与地表物质循环—西南喀斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007:1-608.
|
[37] |
刘丛强, 蒋颖魁, 陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4):404-414.
|
[38] |
刘学炎,肖化云,刘丛强. 植物叶片氮同位素δ15N指示大气氮沉降的探讨[J]. 矿物岩石地球化学通报,2007,26(4):405-409.
|
[39] |
Lal R. Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304:1623-1627.
|
[40] |
王兵,姜艳,郭浩,等.土壤呼吸及其三个生物学过程研究[J].土壤通报,2011,42(2):483-490.
|
[41] |
程建中,李心清,周志红,等. 西南喀斯特地区几种主要土地覆被下土壤CO2-C通量研究[J]. 地球化学,2010,39(3):258-265.
|
[42] |
刘芳, 刘丛强, 王仕禄,等.黔中喀斯特石漠化地区土壤温室气体浓度的时空分布特征[J].环境科学,2009, 30(11):3136-3141.
|
[43] |
Li Q, Wang H, Jin Z, et al. The carbon isotope fractionation in the atmosphere-soil-spring system associated with CO2-fixation bacteria at Yaji karst experimental site in Guilin, SW China[J]. Environmental Earth Sciences, 2015, 74(6): 5393-5401.
|
[44] |
Ge T, Wu X, Chen X, Yuan H, et al. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013,113: 70-78.
|
[45] |
Li W, Yu L J, Yuan D X, et al. A study of the activity and ecological significance of carbonic anhydrase from soil and its microbes from different karst ecosystems of Southwest China[J]. Plant and Soil, 2005, 272(1-2), 133-141.
|
[46] |
Chen X, Su Y, He X, et al. Soil bacterial community composition and diversity respond to cultivation in Karst ecosystems[J]. World Journal of Microbiology and Biotechnology,2012, 28(1), 205-213.
|
[47] |
Gray C J, Engel A S. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer[J]. The ISME journal, 2012, 7(2): 325-337.
|
[48] |
He X Y, Su Y R, Liang Y M, et al. Land reclamation and short-term cultivation change soil microbial communities and bacterial metabolic profiles[J]. Journal of the Science of Food and Agriculture, 2012, 92(5):1103-1111.
|
[49] |
靳振江,汤华峰,李敏,等.典型岩溶土壤微生物丰度与多样性及其对碳循环的指示意义[J].环境科学,2014,35(11):4284-4290.
|
[50] |
王英辉,祁士华,袁道先,等. 广西岩溶洞穴土壤中多环芳烃污染特征与解析[J]. 环境科学,2009,5:1255-1259.
|
[51] |
Jin C S, Tokuhiro K, Ike M, et al. Biodegradation of bisphenol A (BPA) by river water microcosms[J]. Journal-Japan Societyon Water Environment, 1996, 19: 878-884.
|
[52] |
Kang J H, Ri N, Kondo F. Streptomyces sp. strain isolated from river water has high bisphenol A degradability[J]. Letters in applied microbiology, 2004, 39(2): 178-180.
|
[53] |
Li Q, Wang X H, Korzhev M, et al. Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component[J]. Biochimica et Biophysica Acta-General Subjects, 2015,1850(1):118-128.
|
[54] |
Yuan D X. The carbon cycle in karst[J]. Z. Geomorph. N.F.,1997,108:91-102.
|
[55] |
Yoshimura K, Inokura Y. The geohcemical cycle of carbon dioxide in a carbonate rock area, Akiyoshi-dai Plateau, Yamaguchi, Southwestern Japan[M]. Proc. 30th Int. Geol.1997,24:114-126.
|
[56] |
Christina L. An unsung carbon sink[J]. Science, 2011, 334(6058):886-887.
|
[57] |
Groves C, Cao J H, Zhang C. Response-carbon shifted but not sequestered[J]. Science, 335(6069):655.
|
[58] |
Rane L C. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069):655.
|
[59] |
Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4): 162-172.
|
[60] |
章程,谢运球,宁良丹,等. 桂林会仙岩溶湿地典型水生植物δ13C特征与固碳量估算[J]. 中国岩溶,2013,32(3):247-252.
|
[61] |
Waidner L A, Kirchman D L. Aerobic anoxygenic phototrophic bacteria attached to particles in turbid maters of the Delaware and Chesapeake estuaries[J]. Appl Environ Microbiol, 2007, 73 (12):3936-3944.
|
[62] |
Shi L, Cai Y, Chen Z, et al. Diversity and abundance of aerobic anoxygenic phototrophic bacteria in two cyanobacterial bloom forming lakes in China[J]. In Annales de Limnologie-International Journal of Limnology,2010, 46(4):233-239.
|
[63] |
Yurkov V V,Cstonyi J T. New light on aerobic anoxygenic phototrophs. In: Hunter N ed. The purple phototrophic bacteria[M]. New York: Springer, 2009, 28:31-35.
|
[64] |
Jiao N Z, Herndl G J, Hansell D A, et al. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean[J]. Nature Reviews Microbiology,2010, 8(8): 593-599
|
[65] |
Jiao N Z, Tang K, Cai H Y, et al. Increasing the Microbial Carbon Sink in the Sea by Reducing Chemical Fertilization on the Land[J]. Nature Reviews Microbiology, 2011,9(1):75.
|
[66] |
Downing J P, Meybeck M, Orr J C, et al. Land and water interface zones[J]. Water, Air, Soil Pollution, 1993, 70(1):123-137.
|
[67] |
Yuan D X, Zhang C. Karst processes and the carbon cycle, final report of IGCP 379[M]. Bejing: Geological Publishing House,2002.
|
[68] |
Dittrich M, Obst M. Are picoplankton responsible for calcite precipitation in lakes? [J]. Ambio, 2004, 33(8): 559-564.
|
[69] |
Raymond P A, Bauer J E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean[J]. Nature, 2001, 409(6819):497-500.
|
[70] |
Bristow T F, Kennedy M J, Morrison K D, et al. The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates[J]. Geochimica et Cosmochimica Acta, 2012,90:64-82.
|
[71] |
Smith M E, Carroll A R, Scott J J, et al. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming[J]. Earth and Planetary Science Letters, 2014,403: 393-406.
|
[72] |
赵吉睿, 巩瑞红, 李畅游,等.三种碳源对乌梁素海好氧不产氧光合细菌群落结构的影响[J].湖泊科学,2014,26(1):113-120.
|
[73] |
陈晓洁, 曾永辉, 简纪常,等. 玛珥湖好氧不产氧光合细菌pufM基因DNA和mRNA的定量及多样性分析[J]. 微生物学通报, 2012, 39(11):1560-1572.
|
[74] |
Rodrigues S G, Bueno A A D P, Ferreira R L. A new troglobiotic species of Hyalella (Crustacea, Amphipoda, Hyalellidae) with a taxonomic key for the Brazilian species[J]. Zootaxa, 2014, 3815(2): 200-214.
|
[75] |
Krevs A, Kucinskiene A. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania[J]. Knowledge & Management of Aquatic Ecosystems, 2011, 65(402):170-181.
|
[76] |
Lyons W B, Leslie D L, Harmon R S, et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica[J]. Applied Geochemistry, 2013, 32:26-36.
|