• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 35 Issue 3
Jun.  2016
Turn off MathJax
Article Contents
ZHANG Shao-yun, ZHOU Zhong-fa, ZHANG Qiang, XIE Ya-ting. Source of cave CO2 and its spatial attributive characteristics of Zhijin Cave in Guizhou Province[J]. CARSOLOGICA SINICA, 2016, 35(3): 307-313. doi: 10.11932/karst20160309
Citation: ZHANG Shao-yun, ZHOU Zhong-fa, ZHANG Qiang, XIE Ya-ting. Source of cave CO2 and its spatial attributive characteristics of Zhijin Cave in Guizhou Province[J]. CARSOLOGICA SINICA, 2016, 35(3): 307-313. doi: 10.11932/karst20160309

Source of cave CO2 and its spatial attributive characteristics of Zhijin Cave in Guizhou Province

doi: 10.11932/karst20160309
  • Publish Date: 2016-06-25
  • In order to explore the source of cave CO2 and its spatial distribution in karst plateau gorge area,a monitoring program on monthly basis was conducted at Zhijin Cave, Guizhou province, from January to July in 2015 for the monitoring of CO2 concentrations in cave and soil, cave water, soil moisture, rainfall and in the spring water above the cave. The results show that: (1) CO2 concentration in the soil above Zhijin cave is 11-17 times of atmospheric CO2, and 4-7 times of the cave CO2, respectively. The major sources of Zhijin cave CO2 come from air exchange and tourists respiration in horizontal direction; in vertical direction they are mainly from the respiration of plant root extending into the bedrock at the top of the cave, overlying cave foundation in karst fissure, soluble tubes entering inside the cave, the atmospheric CO2 ,and the freed CO2 due to the cave calcium carbonate deposition via groundwater degassing and dripping water in the cave. (2) Zhijin Cave is a multiline cave, the interpolation of space distribution of CO2 content showed characteristics of low ends and high in the middle, at the same time,the low value range of 800-1,000 ppm appears in the range of 1,200-1,400 ppm. In the whole cave, CO2 concentration tends to increase from both ends to the middle of the cave, along with an elevated altitude, which reaches a maximum value in Lingxiao Palace. (3) The groundwater in cave and soil water outside of the cave are both HCO3--Ca2+ type, while the atmospheric precipitation and spring water are SO42--Ca2+type.In the process of vertical migration, the chemical composition (hardness,Ca2+/Mg2+、HCO3-/SO42-、PCO2、SIc) in different parts of water from rain-spring-soil water-cave water is different.

     

  • loading
  • [1]
    蔡炳贵,沈凛梅,郑伟,等.本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J].中国岩溶,2009,28(4):348-354.
    [2]
    朱文孝,李坡,潘高潮.织金洞的气候环境及空气中二氧化碳[J]. 中国岩溶,1993,12(4):118-126.
    [3]
    袁道先,蔡桂鸿. 岩溶环境学[M]. 重庆:重庆出版社, 1988.
    [4]
    杨汉奎. 旅游洞穴的开展与保护[A]. 宋林华, 丁怀元. 喀斯特景观与洞穴旅游[C]. 北京:中国环境科学出版社, 1993.
    [5]
    宋林华,韦小宁,梁福源. 河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J]. 中国岩溶,2003,22(3):66-71.
    [6]
    班凤梅,蔡炳贵. 北京石花洞空气环境主要因子季节性变化特征研究[J]. 中国岩溶,2011,30(2):132-137.
    [7]
    陈伟海,邓亚东,韩道山,等. 桂林市芦笛岩、大岩洞穴环境特征[J]. 中国岩溶,2004,23(2):29-35.
    [8]
    Frisia S, Fairchild I J, Fohlmeister J, etal. Carbon mass-balance modeling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta , 2011, 75(2): 380-400.
    [9]
    Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere[J]. Water Resources Research, 1984, 20(1):153-156.
    [10]
    徐承香,李子忠,黎道洪.贵州织金洞洞穴动物群落多样性与光照强度及土壤重金属含量的关系[J].生物多样性,2013,21(1):62-70.
    [11]
    Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96: 230-246.
    [12]
    Milanolo S, Gabrovsek F. Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina[J]. Boundary-layer meteorology, 2009, 131(3):479-493.
    [13]
    Cuezva S, Fernandez-Cortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Roleo the surface soil layer[J]. Atmospheric Environment, 2011, 45(7): 1418-1427.
    [14]
    Baker A, Genty D. Environmental pressures on conserving cave speleothems: effectsof changing surface land use and increased cave tourism[J]. Journal of Environmental Management, 1998, 53(2):165-167.
    [15]
    贺卫,李坡,钱治,等.织金洞地质遗迹的开发保护与管理[M].贵阳:贵州人民出版社,2011:1.
    [16]
    李景阳,安裕国,戎昆方. 暗河型溶洞的形成和演化过程-以贵州织金洞等为例[J].贵州工学院学报,1991,20(3):1-9.
    [17]
    罗时琴,吕文强, 李安定, 等.织金洞二氧化碳的变化规律及其影响因素分析[J].浙江农林大学学报, 2015, 32(2):291-297.
    [18]
    王红,罗时琴,杨庆东,等.贵州织金洞20年CO2浓度变化规律及影响因素研究[J].湖北农业科学,2014,53(6):1268~1270.
    [19]
    汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006:26-397.
    [20]
    王晓晓.雪玉洞洞穴系统碳的变化特征及洞内CO2来源研究[D].西南大学,2014.
    [21]
    寇文杰.基于EXCEL的地下水化学舒卡列夫分类方法[J]. 工程勘察,2013,(5):48-50,96.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2134) PDF downloads(1265) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return