• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 35 Issue 3
Jun.  2016
Turn off MathJax
Article Contents
HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308
Citation: HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308

Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing

doi: 10.11932/karst20160308
  • Publish Date: 2016-06-25
  • To explore the variation characteristics of DICδ13C in the drip water and pool water in Furong cave, Chongqing, their influencing factors, and their impact on climate, the cave had been monitored from May 2013 to May 2014. The results showed that the CO2 concentration for both the soil air and cave air was high in summer and low in winter, which displayed significantly seasonal variations. They were affected by the combined effects of temperature and precipitation. The average DICδ13C value of the drip waters from five monitoring sites was -8.98‰, while the average DICδ13C value of the pool waters from two monitoring sites was -6.98‰, showing that the DICδ13C value of pool water was 2‰ heavier than that of the drip water. Corresponding to the arid climate in July 2013, the DICδ13C of cave water became heavier in October, while the light DICδ13C values indicated the delayed response to the humid climate. The DICδ13C of cave water showed a significant lag period to respond the climate change. The DICδ13C was dominantly affected by the soil CO2, also by bedrock dissolution, prior calcite precipitation and the opening degree of vadose zone. Our study demonstrates that on short time scales, the variations of DICδ13C of the drip water in Furong cave respond to the changes of local precipitation and the humidity conditions overlying the cave.

     

  • loading
  • [1]
    Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite [J]. Nature, 1993, 364: 518-520.
    [2]
    Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice cave, Missouri, USA [J]. Science, 1998, 282: 1871-1874.
    [3]
    Fleitmann D, Burns S J, Mudelsee M. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 2003, 300: 1737-1739.
    [4]
    Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304: 575-578.
    [5]
    Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
    [6]
    Quade J, Ceriing T E, Bowman J R. Systematic variations in carbon and oxygen isotopic composition of Pedogenic soil carbonate along elevational transects in the southern Great Basin, United States [J]. Geological Society of America Bulletin, 1989, 101:464-475.
    [7]
    Dorale J A, Gonzálex L A, Reagan M K, et al. A high-resolution record of holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa [J]. Science, 1993, 258: 1626-1630.
    [8]
    Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter: Implications for δ13C variations in speleothems [J]. Geochimica et Cosmochimica Acta, 2001,65(20): 3443-3457.
    [9]
    Baldini J, McDermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England [J]. Earth and Planetary Science Letters, 2005, 240:486-494.
    [10]
    李红春, 顾德隆, Stott L D, 等. 北京石花洞500年来的δ13C记录与古气候变化及大气CO2 浓度变化的关系[J]. 中国岩溶, 1997, 16(4): 285-295.
    [11]
    Linge H, Lauritzen S E, Lundberg J, et al. Stable isotope stratigraphy of Holocene speleothems: Examples from a cave system in Rana, northern Norway [J]. Palaeogeography Palaeoclimatology,Palaeoecology, 2001, 167: 209-224.
    [12]
    Fairchild I J, Tuckwell G W, Baker A. Modelling of drip water hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies [J]. Journal of Hydrology, 2006, 321: 213-231.
    [13]
    刘肖, 杨琰, 彭涛, 等. 河南鸡冠洞洞穴水对极端气候的响应及其控制因素研究[J]. 环境科学, 2015, 36(5):1582-1589.
    [14]
    BarMatthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel [J]. Earth and Planetary Science Letters, 1999, 166(1-2):85-95.
    [15]
    Sp?tl C, Fairchild I J, Tooth A F. Cave air control on drip water geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves [J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
    [16]
    Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments [J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 753-768.
    [17]
    Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4140-4156.
    [18]
    衣成城, 李廷勇, 李俊云, 等. 芙蓉洞洞穴离子浓度和元素比值变化特征及其环境意[J]. 中国岩溶, 2011, 30(2): 99-103.
    [19]
    叶明阳, 李廷勇, 王建力, 等. 芙蓉洞次生碳酸盐沉积特征及与降水的关系研究[J]. 沉积学报, 2009, 27(4): 684-690.
    [20]
    向晓晶, 李廷勇, 王建力, 等. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J]. 中国岩溶, 2011, 30(2): 193-199.
    [21]
    Li J Y, Li T Y, Wang J L, et al. Characteristics and environmental significance of Ca, Mg, and Sr in the soil infiltrating water overlying the Furong Cave, Chongqing, China [J]. Science China, Earth Science, 2013,56(12): 2126-2134.
    [22]
    朱学稳. 芙蓉洞的次生化学沉积物[J]. 中国岩溶, 1994, 12(4): 357-368.
    [23]
    李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物 δ13C、δ18O特征及意义[J]. 地质论评, 2008, 54(5): 712-720.
    [24]
    Li T Y, Li H C, Xiang X J, et al. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area [J]. Science China, Earth Science, 2012, 55(4): 685-694.
    [25]
    蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J]. 干旱区地理, 2005, 28(3): 316-319.
    [26]
    Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation [J]. Geochimica et Cosmochimica Acta,2012,96:230-246.
    [27]
    Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
    [28]
    Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere [J]. Water Resources Research, 1984, 20(1): 153-156.
    [29]
    Milanolo S, Gabrovsek F. Analysis of carbon dioxide variation in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina [J]. Boundary-layer meteorology, 2009, 131(3): 479-493.
    [30]
    Cuezva S, FernadezCortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer [J]. Atmospheric Environment, 2011, 45(7): 1418-1427.
    [31]
    Baker A, Genty D. Environmental pressure on conserving cave speleothems: effects of changing surface land use and increased cave tourism [J]. Journal of Environmental Management, 1998, 53(2): 165-175.
    [32]
    Hartland A, Fairchild I J, Lead J R, et al. From soil to cave: Transport of trace metals by natural organic matter in karst drip waters [J]. Chemical Geology, 2012, 304(3):68-82.
    [33]
    Kowalczk A J, Froelich P N. Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? [J]Earth and Planetary Science Letters, 2010, 289(1): 209-219.
    [34]
    Hendy, C H. The isotopic geochemistry of speleothems-I. The Calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators [J]. Geochimica et Cosmochimica Acta, 1971, 35: 801-824.
    [35]
    Fohleister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water [J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5219-5228.
    [36]
    Johnson K R, Hu C Y, Belshaw N S, et al . Seasonal trace element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 394-407.
    [37]
    章程. 不同土地利用下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56: 136-140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1903) PDF downloads(1471) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return