Processing math: 100%
  • Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
HUANG Qi-bo, QIN Xiao-qun, LIU Peng-yu, ZHANG Lian-kai, SU Chun-tian. Proportion of pedogenic carbonates and the impact on carbon sink calculation in karst area with semiarid environment[J]. CARSOLOGICA SINICA, 2016, 35(2): 164-172. doi: 10.11932/karst20160205
Citation: HUANG Qi-bo, QIN Xiao-qun, LIU Peng-yu, ZHANG Lian-kai, SU Chun-tian. Proportion of pedogenic carbonates and the impact on carbon sink calculation in karst area with semiarid environment[J]. CARSOLOGICA SINICA, 2016, 35(2): 164-172. doi: 10.11932/karst20160205

Proportion of pedogenic carbonates and the impact on carbon sink calculation in karst area with semiarid environment

doi: 10.11932/karst20160205
  • Publish Date: 2016-04-25
  • Quantitative evaluation of proportion and source of pedogenic carbonates in karst area with semiarid environment have contributed to understand the mechanism of soil system affecting karst process, which has great significance in karst carbon cycle research. Soil samples were collected from soil profile of forest land, abandoned farmland and brushland, in a typical small watershed in semi-arid area, southwest of Jinzhong basin, Shanxi Province, China, for analysis of content and δ13C of soil carbonates, content and δ13C of CO2 and δ13C of parent rocks, hence to explore their variation with depth and controlling factors, and quantify ratio of pedogenic carbonates in soil carbon. Results show that in the upper layer(0 to 50 cm), the content of soil carbonates and CO2 increase with depth, while the δ13C of soil carbonates and CO2 decrease with depth. In the lower layer (50-70 cm), the content of soil carbonates and CO2 decrease with depth, and the δ13C of soil carbonates and CO2 increase with depth. The content and δ13C of soil carbonates are mainly controlled by pedogenic carbonates proportion, while the content and δ13C of CO2 are mainly affected by atmospheric CO2 and soil CO2 generated by organic matter decomposition in the upper layer, and impacted by karst process in soil-rock interface in the lower layer. The average proportion of pedogenic carbonates is 52%, 42%, 32% for abandoned farmland, forest land and brushland, respectively. This paper confirmed that the lithogenic carbonates can transform to pedogenic carbonates in north karst area with semiarid environment.

     

  • [1]
    IPCC. Climate change 2007: Climate change impacts, adaptation and vulnerability[R]. Cambridge, 2007.
    [2]
    许乃政, 刘红樱, 魏峰. 土壤碳库及其变化研究进展[J]. 江苏农业科学, 2011, 39(2): 1-5.
    [3]
    King D A. Environment. Climate change science: adapt, mitigate, or ignore?[J]. Science, 2004, 303(5655):176-7.
    [4]
    曲建升, 孙成权, 张志强, 等. 全球变化科学中的碳循环研究进展与趋向[J]. 地球科学进展, 2003, 18(6):980-987.
    [5]
    姚冠荣, 高全洲. 河流碳循环对全球变化的响应与反馈[J]. 地理科学进展, 2005, 24(5):50-60.
    [6]
    Falkowski P, Scholes R J, Boyyle E. global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290:291-296.
    [7]
    徐小锋, 宋长春. 全球碳循环研究中“碳失汇”研究进展[J]. 中国科学院研究生院学报, 2004, 21(2):145-152.
    [8]
    袁道先. 中国岩溶学[M]. 北京,地质出版社.1993.
    [9]
    Jiang Z C, Yuan D X. CO2 source-sink in karstprocesses in karst areas of China[J]. Episodes, 1999, 22(1):33-35.
    [10]
    Yuan D X. The carbon cycle in karst[J]. Z Geomorph N F, 1997,(Suppl-Bd 108):91-102.
    [11]
    袁道先, 刘再华. 碳循环与岩溶地质环境[M]. 北京: 科学出版社, 2003:97-99.
    [12]
    蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J].中国岩溶,2000,19(3):212-217.
    [13]
    徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-956.
    [14]
    袁道先,蔡桂鸿.岩溶环境学[M].北京:重庆出版社,1988.
    [15]
    章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J].地质学报,2002, 76(4): 566-570.
    [16]
    梁永平,王维泰, 段光武. 鄂尔多斯盆地周边地区野外溶蚀试验结果讨论[J].中国岩溶,2007, 26(4):315-320.
    [17]
    黄奇波,覃小群,刘朋雨,等.半干旱区岩溶碳汇原位监测方法适宜性研究[J].吉林大学学报:地球科学版,2015,45(1):240-246.
    [18]
    Zhang C. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(35):3759-3765.
    [19]
    黄奇波, 覃小群, 刘朋雨, 等. 北方不同植被下土壤岩石试片的溶蚀速率及碳汇分析:以山西汾阳地区为例[J]. 中国岩溶, 2013, 32(3): 258-265.
    [20]
    许文强, 陈曦, 罗格平,等. 土壤碳循环研究进展及干旱区土壤碳循环研究展望[J]. 干旱区地理, 2011, 34(4):614-620.
    [21]
    Kohut C, Muehlenbachs K, Dudas M J. Authigenic dolomite in a saline soil in alberta, Canada[J]. Soil Science Society of America Journal, 1995, 59(5): 1499-1504.
    [22]
    杨黎芳, 李贵桐.土壤无机碳研究进展[J].土壤通报,2011, 42(4):986-990.
    [23]
    杨黎芳,李贵桐,李保国.土壤发生性碳酸盐碳稳定性同位素模型及其应用[J].地球科学进展, 2006,21(9):973-981.
    [24]
    韩家懋, 姜文英, 刘东生,等. 黄土碳酸盐中古气候变化的同位素记录[J]. 中国科学(D辑:地球科学), 1996(5):399-404.
    [25]
    陈忠, 马海州, 曹广超, 等.黄土碳酸盐的研究[J]. 盐湖研究, 2006, 14(4):66-72.
    [26]
    黄成敏, 王成善, 艾南山. 土壤次生碳酸盐碳氧稳定同位素古环境意义及应用[J]. 地球科学进展, 2003, 18(4):619-625.
    [27]
    张林,孙向阳, 高程达, 等. 荒漠草原土壤次生碳酸盐形成和周转过程中固存CO2的研究[J].土壤学报, 2011,48(3):578-586.
    [28]
    鲍士旦. 土壤农化分析[M].北京: 中国农业出版社,1999:34-35.
    [29]
    陶成, 把立强, 李广友,等. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用[J]. 岩矿测试, 2006, 25(4):334-336.
    [30]
    潘根兴. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J]. 南京农业大学学报, 1999, 22(1):51-57.
    [31]
    潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报, 1999, 15(5):330-332.
    [32]
    顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展[J]. 第四纪研究, 2000, 20(1):41-45.
    [33]
    Yang W, Amundson R, Trumbore S. A model for soil 14CO2, and its implications for using 14C to date pedogenic carbonate[J]. Geochimica Et Cosmochimica Acta, 1994, 58(1):393-399.
    [34]
    NordtL C, W ilding L P, Hallmark C T, et al. Carbon isotope composition of soil carbonates and their use in studying pedogenesis [C]∥Yamasaki S, Boutton TW, eds. Mass Spectrometry of Soils. New York: MarcelDekker Inc, 1996: 133-154.
    [35]
    Mermut A R, Amoundson R, Cerling T E. The use of stable isotopes in studying carbonate dynamics in soils[C]∥Lal R, Kimble J, Eswaran H, eds. Global Climate Change and Pedogenic Carbonates. Florida: LewisPublishers, 2000: 65-85.
    [36]
    曹建华, 周莉, 杨慧, 等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3):431-437.
    [37]
    Hinkle M E. Environmental conditions affecting concentrations of He,CO2,O2and N2 in soil gases[J]. Applied Geochemistry, 1994, 9(1)::53-63.
    [38]
    Bruulsema T W, Duxbury J M. Simultaneous Measurement of Soil Microbial Nitrogen, Carbon, and Carbon Isotope Ratio[J]. Soilence Society of America Journal, 1996, 60(6):1787-1791.
    [39]
    Pankina R G. Origin of CO2 in petroleum gases (from the isotopic composition of carbon)[J]. International Geology Review, 1979, 21(5):535-539.
    [40]
    郑乐平. 黔中岩溶地区土壤CO2的稳定碳同位素组成研究[J]. 中国科学, 1999,29(6):514-519.
    [41]
    郑乐平,欧阳自远,张晓岚,等.黔中岩溶地区草地土壤CO2的稳定碳同位素组成[J].环境科学, 2000, 21(5):38-41.
    [42]
    Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth & Planetary Science Letters, 1984, 71(2):229-240.
    [43]
    Salomons W, Mook W G. Isotope geochemistry of carbonate dissolution and reprecipitation in soils[J]. Soil Science, 1976,122:15-24.
    [44]
    Nordt L C, Hallmark C T, Wilding L P, et al. Quantifying pedogenic carbonate accumulations using stable carbon isotopes[J]. Geoderma, 1998, 82:115-136.
  • Relative Articles

    [1]ZHAO Guangshuai, ZHU Yinian, XIE Yincai, SHEN Lina, WU Huaying, LI Tengfang, HUANG Qibo. Dissolution process of carbonate rocks by different types of water in atmospheric environment and δ13C evolution of dissolved inorganic carbon[J]. CARSOLOGICA SINICA, 2025, 44(1): 124-135, 146. doi: 10.11932/karst20250109
    [2]WANG Xiaoduo, ZHOU Zhongfa, DONG Hui, DING Shengjun, GONG Xiaohuan, XIONG Yong, SU Dan, ZHANG Ye. Temporal and spatial variations of soil CO2 and δ13CCO2 from different land uses in typical dolomite areas of Southwest China[J]. CARSOLOGICA SINICA, 2024, 43(5): 1034-1046. doi: 10.11932/karst20240504
    [3]LI Haitao, WU Yanyou, FU Bing. Carbon sink of microalgae in karst lakes under the influence of the extracellular of carbonic anhydrase[J]. CARSOLOGICA SINICA, 2022, 41(3): 395-400, 440. doi: 10.11932/karst20220307
    [4]WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. CARSOLOGICA SINICA, 2021, 40(4): 572-579.
    [5]HUANG Qibo, QIN Xiaoqun, CHENG Ruirui, LI Tengfang, LIU Pengyu. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J]. CARSOLOGICA SINICA, 2019, 38(2): 149-156. doi: 10.11932/karst20190201
    [6]WU Zeyan, LUO Weiqun, JIANG Zhongcheng, ZHANG Cheng, HU Zhaoxin, CAO Jianhua. Effects of filter sludge and organic manure soil improvement on soil hydrochemistry and net CO2 consumption of dissolution of carbonate rocks[J]. CARSOLOGICA SINICA, 2019, 38(1): 60-69. doi: 10.11932/karst20190107
    [7]LIU Jiuchan, SUN Yuchuan, SHEN Licheng, TANG Lian, LIU Ningkun, YOU Xianhui. Effects of rocky desertification control on CO2,CH4 variation and carbon sink in soil[J]. CARSOLOGICA SINICA, 2018, 37(5): 733-741. doi: 10.11932/karst20180511
    [8]HUANG Binghui, LI Qiang, FANG Junjia, CAO Jianhua, JIN Zhenjiang, PENG Wenjie, LU Xiaoxuan, LIANG Yueming. Effects of CO2 concentration gradient on carbonicanhydrase of two karst microalgae[J]. CARSOLOGICA SINICA, 2018, 37(1): 91-100. doi: 10.11932/karst20180105
    [9]ZHAO Li-hua, WU Yan-you, XIE Teng-xiang, LI Hai-tao, ZHANG Kai-yan, HANG Hong-tao. Stable carbon isotope fractionation (δ13C) of microalgae on CO2 assimilation[J]. CARSOLOGICA SINICA, 2016, 35(4): 357-362. doi: 10.11932/karst20160402
    [10]WANG Jing-xia, LEI Lei, YU Qing-chun. Evaluation of capacity and suitability of CO2 geological storage in carbonate formations in basins of China mainland[J]. CARSOLOGICA SINICA, 2015, 34(2): 101-108. doi: 10.11932/karst20150202
    [11]SUN Hai long, LIU Zai hua, YAN Hao, YANG Rui, ZENG Cheng, WANG Hai jing. Comparison to the δ13C value in dissolved inorganic carbons extracted with different methods[J]. CARSOLOGICA SINICA, 2013, 32(1): 117-122. doi: 10.3969/j.issn.1001-4810.2013.01.017
    [12]Lan Fu-ning, Wang Wen-juan, Qin Xiao-qun, Huang Qi-bo, Liu Peng-yu, An Shu-qing, Tang Shao-Zheng. Impact on soil CO2 concentration by the changes of land use and vegetation cover in karst area[J]. CARSOLOGICA SINICA, 2011, 30(4): 449-455. doi: 10.3969/j.issn.1001-4810.2011.04.016
    [13]LI Tao, CAO Jian-hua, ZHANG Mei-liang, HUANG Yan-mei, CHEN Jia-rui, YAN Yi-ping, LI Guang-chao, ZHU Xiao-yan. The seasonal variation of soil CO2 concentration in epikarst in the Panlong Cave, Guilin[J]. CARSOLOGICA SINICA, 2011, 30(3): 348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018
    [14]LIANG Fu-yuan, SONG Lin-hua, Tang Tao, Wang Jing. MICROBIAL PRODUCTION OF CO2 IN RED SOIL IN STONE FOREST NATIONAL PARK[J]. CARSOLOGICA SINICA, 2003, 22(1): 6-11. doi: 10.3969/j.issn.1001-4810.2003.01.002
    [15]HE Hui, ZHAO Jing-bo, DU Juan, HAO Yu-fen, LIU Xiao-qiong, TONG Xin-gang. A STUDY ON RELEASE FLUX OF CO2 IN SOUTHERN SUBURB OF XI 'AN AND CHANGWU OF NORTHERN SHAANXI[J]. CARSOLOGICA SINICA, 2002, 21(4): 258-262. doi: 10.3969/j.issn.1001-4810.2002.04.005
    [16]Liu Zaihua. CONTRIBUTION OF CARBONATE ROCK WEATHERINGTO THE ATMOSPHERIC CO2 SINK[J]. CARSOLOGICA SINICA, 2000, 19(4): 293-300. doi: 10.3969/j.issn.1001-4810.2000.04.001
    [17]Zheng Leping. STUDIES ON THE ISOTOPIC COMPOSITIONS OF THESOIL CO2 AT KARST MOUNTAIN FOREST AREAS[J]. CARSOLOGICA SINICA, 1998, 17(4): 325-330.
    [18]Li Hongchun, Teh-Lung Ku, Lowell D. Sto t t, Yuan Daoxia n, Chen WenJi, Li Tieying. INTERANNUAL-RESOLUTIONδ13C RECORD OFSTALAGMITES AS PROXY FOR THE CHANGES INPRECIPITATION AND ATMOSPHERIC CO2IN SHIHUA CAVE, BEIJING[J]. CARSOLOGICA SINICA, 1997, 16(4): 285-295.
    [19]He Shiyi, Xu Shengyou, Zhang Meiliang. OBSERVATION ON SOLL CO2 CONCENTRATION,HYDROCHEMISTRY, AND THEIRRELATIONSHIP WITH KARST PROCESSES[J]. CARSOLOGICA SINICA, 1997, 16(4): 319-324.
    [20]Xu Shengyou, He Shiyi. THE COO2 REGIME OF SOIL PROFILE AND ITS DRIVE TO DISSOLUTION OF CARBONATE ROCK[J]. CARSOLOGICA SINICA, 1996, 15(Z1): 50-57.
  • Cited by

    Periodical cited type(8)

    1. 卢伟伟,杨佳. 苏北滨海土壤无机碳组成和储量及其控制因子. 应用生态学报. 2024(08): 2131-2140 .
    2. 于奭,蒲俊兵,刘凡,杨慧. 岩溶碳汇效应对植被的响应研究进展. 地学前缘. 2023(04): 418-428 .
    3. 张宇轩,唐金荣,牛亚卓,张静雅,赵禹,魏建设,姜光政,王利伟. 中国西北在碳中和进程中的资源优势和地质工作建议. 中国地质. 2022(05): 1458-1480 .
    4. 敦宇,许嘉文,白雪山,禤映雪,曹英杰,靳潇锐,赵玉川,武超. 地下水灌溉对华北平原农田土壤碳库转化影响. 环境科学研究. 2021(05): 1187-1195 .
    5. 张永红,刘飞,钟松. 土壤无机碳研究进展. 湖北农业科学. 2021(10): 5-9+14 .
    6. 李博,赵琼,毛兵,孙庆业. 我国东部主要类型土壤酸缓冲能力的影响因素. 生态学杂志. 2021(12): 3901-3910 .
    7. 吕小溪,颜翔琦,胡晨鹏. 喀斯特关键带的地质碳汇及其影响因素研究进展. 河北民族师范学院学报. 2020(04): 107-115 .
    8. 李杨梅,贡璐,安申群,孙力,陈新. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移. 环境科学. 2018(08): 3867-3875 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1726) PDF downloads(1360) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return