• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 35 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
SHEN Wei, WANG Jian-li, WANG Jia-lu, JIANG Xian-shu, MAO Qing-ya. Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors[J]. CARSOLOGICA SINICA, 2016, 35(1): 98-105. doi: 10.11932/karst20160114
Citation: SHEN Wei, WANG Jian-li, WANG Jia-lu, JIANG Xian-shu, MAO Qing-ya. Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors[J]. CARSOLOGICA SINICA, 2016, 35(1): 98-105. doi: 10.11932/karst20160114

Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors

doi: 10.11932/karst20160114
  • Publish Date: 2016-02-25
  • Naduo cave is located in the east of Yunnan-Guizhou Plateau, Guanling county, Anshun City of Guizhou Province, China. This region is in humid subtropical monsoon climate, with a mild and humid climate and four distinctive seasons. During the period from April 2013 to May 2014, four dripping water sites (D3, D4, D10, D11) and one pool water site (DC) have been selected for a long term monitoring in Naduo cave. In order to understand the hydrochemistry, δ13CDICfeatures and their correlation with the cave water, samples of cave water were collected monthly to measure stable carbon isotope and some other geochemical indexes. The result showed that,(1)The cave water is oversaturated to calcite in the monitoring period, which reflects the cave is at the stage of carbonate deposition. The SIc of cave water during rainy season is lower than that in dry season while its PCO2is higher. It is caused mainly by a high concentration of dissolved CO2 in the soil. Under the circumstances of suitable temperature, the precipitation had an important influence on the deposition of speleothems;(2)The water in Naduo cave can respond perfectly to the change of external climate environment. Influenced by the increase of precipitation, the concentration of dissolved CO2 in soil and the activities of plants and microorganism, the δ13CDIC values possess extraordinary seasonal characteristics, lower in summer and higher winter; (3)There is remarkable difference amongδ13CDIC values of cave waters at 5 sampling sites synchronously. Inverse correlation betweenδ13CDIC values of cave water and its corresponding contents of Ca2+, Mg2+, HCO3-, EC and SIc, respectively, has been found in cave waters. These features imply thatδ13CDIC values of cave waters are controlled by soil leaching, bedrock dissolution and prior calcite precipitation (PCP) in different extent. Therefore, the interpretation of δ13CDIC values recorded in speleothems can be more accurate if considering the effects of the above mentioned hydrogeochemical processes.

     

  • loading
  • [1]
    Yuan D X, Cheng H, R L Edwards, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
    [2]
    Wang Y J, Cheng H, R L Edwards, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348.
    [3]
    Wang Y J, Cheng H, R L Edwards, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 2005, 308(5723): 854-857.
    [4]
    Wang Y J, Cheng H, R L Edwards, et al. Millennial and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182): 1090-1093.
    [5]
    汪永进, 吴江滢, 刘殿兵, 等. 石笋记录的东亚季风气候H1事件的突变性特征[J]. 中国科学(D辑), 2002 ,32(3): 227-233.
    [6]
    Li T Y, Yuan D X, Li H C, et al. High-resolution climate variability of southwest China during 57-70ka reflected in a stalagmite δ18O record from Xinya Cave [J]. Science in China (Ser. D), 2007, 50(8): 1202-1208.
    [7]
    Hu C Y, Huang J H, Fang N Q, et al. Adsorbed silica in stalagmite carbonate and its relationship to past rain fall [J]. Geochimic et Cosmochimica Acta, 2005, 69 (9): 2285-2292.
    [8]
    Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem [J]. Earth and Planetary Science Letters, 1998, 154 (1): 237-246.
    [9]
    李彬,袁道先,林玉石,等.洞穴次生化学沉积物中Mg,Sr,Ca及其比值的环境指代意义[J].中国岩溶,2000,19(2):115-122.
    [10]
    马志邦, 李红春, 夏明, 等. 距今3ka来京东地区的古温度变化:石笋Mg/Sr记录[J]. 科学通报, 2002 ,47(23): 1829-1834.
    [11]
    邵晓华, 汪永进, 孔兴功, 等. 南京葫芦洞石笋生长速率及其气候意义讨论[J]. 地理科学, 2003,23(3): 304-309.
    [12]
    Baker A, Asrat A, Fairchild I J, et al. Analysis of climate signal contained within δ18O and growth rate parameters in two Ethiopian stalagmites [J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2975-2988.
    [13]
    彭玲莉, 李廷勇. 岩溶洞穴滴水环境监测研究进展[J].中国岩溶,2012,31(3): 316-326.
    [14]
    Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
    [15]
    Coplen T B, Winograd I J, Landwehr J M, et al. 500,000-year stable carbon isotopic record from Devils Hole, Nevada[J].Science, 1994, 263(5145): 361-365.
    [16]
    Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6925): 833-837.
    [17]
    Cosford J, Qing H R, Mattey D, et al. Climatic and local effects on stalagmites δ13 C values at Lianhua Cave, China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 280(1): 235-244.
    [18]
    Sp?tl C, Fairchild I J, Tooth A F. Cave air control on drip water geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves [J]. Geochimica Et Cosmochimica Acta, 2005, 69(10): 2451-2468.
    [19]
    Bar-Matthews M, Ayalon A, Matthews A, et al. Carbon and oxygen isotope study of the active water carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions [J]. Geochimica Et Cosmochimica Acta, 1996, 60(2): 337-347.
    [20]
    Baker A, Ito E, Smart P L, et al. Elevated and variable values of δ13C in speleothems in a British cave system [J]. Chemical Geology, 1997, 136(3): 263-270.
    [21]
    张美良,朱晓燕,林玉石,等.桂林洞穴滴水及现代碳酸钙(CaCO3)沉积的碳同位素记录及其环境意义[J]. 地球学报, 2009, 30(5): 634-642.
    [22]
    王世杰,罗维均,刘秀明, 等.贵州七星洞系统中水文地球化学特征对滴水δ13CDIC的影响及其意义[J].地学前缘, 2009, 16(6): 66-76.
    [23]
    李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物δ13C、δ18O 特征及意义[J]. 地质论评, 2008,54(5):712-720.
    [24]
    Li T Y, Shen C C,Li H C,et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica Et Cosmochimica Acta,2011,75(15): 4140-4156.
    [25]
    李廷勇,李红春,向晓晶,等.碳同位素(δ13C)在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J].中国科学,地球科学,2012,42(4):526-535.
    [26]
    Hu C Y, Henderson G, Huang J H, et al. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International Journal of Speleology, 2008, 37(3): 143-151.
    [27]
    沈蔚, 王建力, 王家录,等. 贵州纳朵洞洞穴水水文地球化学变化特征及其环境意义[J]. 环境科学, 2015,36(12):4455-4463.
    [28]
    Wigley T M L. WATSPEC: A computer program for determining the equilibrium speciation of aqueous solutions [R]. London: British Geo-morphological Research Group. Technical Bulletin, 1977.
    [29]
    张美良, 朱晓燕, 林玉石,等.桂林盘龙洞滴水的物理化学指标变化研究及其意义[J].地球与环境,2009, 37(7):1-10.
    [30]
    张美良, 林玉石, 覃嘉铭. 洞穴石笋沉积纹层的形态组合及其滴水的水动力条件[J]. 西南师范大学学报: 自然科学版, 2001 , 26(4):466-470.
    [31]
    衣成城,李廷勇,李俊云,等.芙蓉洞洞穴水离子浓度和元素比值变化特征及其环境意义[J].中国岩溶,2011,30(2):200-207.
    [32]
    Verheyden S, Keppens E, Fairchild I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: Implications for paleoclimate reconstructions [J]. Chemical Geology, 2000, 169(1): 131-144.
    [33]
    刘启明, 王世杰. 洞穴体系对外界气候与生态环境的响应[J]. 生态学杂志, 2005,24 (10):1172-1176.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2193) PDF downloads(1285) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return