• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 34 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
QI Le, GAO Ming, YANG Lai-shu, WANG Dan, DENG Wei. The effect of land integration on soil microbial biomass carbon, nitrogen and enzyme activity in karst areas:An example of Sanba township, Fengdu county, Chongqing City[J]. CARSOLOGICA SINICA, 2015, 34(1): 86-94. doi: 10.11932/karst20150112
Citation: QI Le, GAO Ming, YANG Lai-shu, WANG Dan, DENG Wei. The effect of land integration on soil microbial biomass carbon, nitrogen and enzyme activity in karst areas:An example of Sanba township, Fengdu county, Chongqing City[J]. CARSOLOGICA SINICA, 2015, 34(1): 86-94. doi: 10.11932/karst20150112

The effect of land integration on soil microbial biomass carbon, nitrogen and enzyme activity in karst areas:An example of Sanba township, Fengdu county, Chongqing City

doi: 10.11932/karst20150112
  • Publish Date: 2015-02-25
  • Land integration is an important measure to build high-standard prime farmland. It can improve production and living conditions of farmers and enhance the comprehensive land productivity. This study takes the land integration project in the karst area of Sanba township, Fengdu county in Chongqing City as an example. It collected 52 points before this project (December 2012) and 28 typical points afterwards (March 2013). Through field sampling and laboratory analysis, this paper have studied the effect of this project on soil microbial structure, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN) and enzyme activity including catalase (CAT), urease (URE), and sucrase(INV) activity of soil microorganisms in the low hilly area. Our objective was to describe the distribution characteristics before and after finishing land integration. The results show that, (1) the implementation of this project has imposed significant effect on soil microbial. After the land integration, the number of actinomycetes decreased in the soil than the previous state, and the number of fungi increased. (2) Land integration reduced overall SMBC and SMBN content in 0 to 20 cm soil, of which SMBC content was decreased by 20.33% and SMBN content decreased by 47.84%, respectively. In vertical distribution, land integration changed the rule that SMBC and SMBN contents vary with soil depth, showing their minimum values 68.34 mg/kg and maximum value 33.58 mg/kg in the subsurface of 20 to 40 cm. (3) In the same soil, land integration has caused significant differences between urease activity and catalase activity in 0 to 20 cm and 20 to 40 cm, while invertase activities were significant different in 0 to 20 cm, 20 to 40 cm and 40 to 60 cm soil levels. After land integration, urease and catalase activity decreased, and invertase activity improved, each in the soil tends to be uniform as well. (4) Organic material is significantly positively correlated with surface SMBC and SMBN contents and urease activity, and pH shows a significant positive correlation with soil enzyme activity. The change of SMBC and SMBN contents and soil enzyme activity can be used as indicators to determine the soil fertility level and soil fertility effect before and after land integration, and it can help to carry out soil improvement and soil fertility work in the area after land integration.

     

  • loading
  • [1]
    兰木羚,高明.重庆丰都岩溶区植烟土壤肥力特征及综合评价研究[J].中国岩溶,2014,33(2):216-222.
    [2]
    王军,李正,白中科,等.土地整理对生态环境影响的研究进展与展望[J].农业工程学报,2011,27(1):340-345.
    [3]
    Manickam N, Pathak A, Saini H S, et al. Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India[J]. Journal of Applied Microbiology, 2010,109(4):1458-1468.
    [4]
    舒维花,蒋齐,王占军,等.植被恢复对土壤微生物的影响[J].农业科学研究,2012,33(1):73-79.
    [5]
    张洋,倪九派,周川,等.三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J].中国生态农业学报, 2014, 22(7): 766-773.
    [6]
    杨文亭,冯远娇,王建武.不同耕作措施对土壤微生物的影响[J].土壤通报,2011,42(1):214-219.
    [7]
    叶艳妹,吴次芳.土地整理对土壤性状的影响及其重建技术和工艺研究[J].浙江大学学报(农业与生命科学版),2002,28(3):267-271.
    [8]
    王军,严慎纯,白中科,等.土地整理的景观格局与生态效应研究综述[J].中国土地科学,2012,26(9): 87-94.
    [9]
    刘勇,吴次芳,岳文泽,等.土地整理项目区的景观格局及其生态效应[J].生态学报,2008,28(5):2261-2269.
    [10]
    谭梦,黄贤金,钟太洋,等.土地整理对农田土壤碳含量的影响[J].农业工程学报,2011,27(8):324-329.
    [11]
    庞绪,何文清,严昌荣,等.耕作措施对土壤水热特性和微生物生物量碳的影响[J].生态学报,2013,33(4): 1308-1316.
    [12]
    马晓霞,王莲莲,黎青慧,等.长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J].生态学报,2012, 32(17): 5502-5511.
    [13]
    华颖,王子芳,高明,等.土地整理对土壤有效态微量元素的影响[J].水土保持学报,2014,28(5):253-257,274.
    [14]
    中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [15]
    吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [16]
    关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [17]
    薛薇.统计分析与SPSS的应用[M].北京:中国人民大学出版社,2011:140-155.
    [18]
    刘淑英.不同施肥对西北半干旱区土壤脲酶和土壤氮素的影响及其相关性[J].水土保持学报,2010,24(1):219-223.
    [19]
    司鹏,乔宪生.清耕和生草对沙地葡萄园土壤酶活性的空间影响[J].果树学报,2014,31(2):238-244.
    [20]
    贾伟,周怀平,解文艳,等.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J].植物营养与肥料学报,2008,14(4): 700-705.
    [21]
    马朋,李昌晓,雷明,等. 三峡库区岸坡消落带草地、弃耕地和耕地土壤微生物及酶活性特征[J]. 生态学报,2014,34(4):1010-1020.
    [22]
    樊文华, 白中科,李慧峰,等.不同复垦模式及复垦年限对土壤微生物的影响[J].农业工程学报,2011,27(2):330-336.
    [23]
    王军,严慎纯,余莉,等.土地整理的生态系统服务价值评估与生态设计策略:以吉林省大安市土地整理项目为例[J].应用生态学报,2014,25(4):1093-1099.
    [24]
    杨来淑.土地整理前后土壤质量的变化研究:以丰都县三坝乡土地整理区为例[D].重庆:西南大学,2014:50-53.
    [25]
    周芙蓉,王进鑫,杨楠,等.水分和铅胁迫对土壤酶活性的影响[J].草地学报,2013,21(3):479-484.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2305) PDF downloads(1542) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return