• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 34 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
CUI Yu-liang, WANG Gen-hou, LI Zhi-yong. Risk assessment of karst collapse areas based on the improved fish bone model: An example of the Liuzhou area in Guangxi Province[J]. CARSOLOGICA SINICA, 2015, 34(1): 64-71. doi: 10.11932/karst20150109
Citation: CUI Yu-liang, WANG Gen-hou, LI Zhi-yong. Risk assessment of karst collapse areas based on the improved fish bone model: An example of the Liuzhou area in Guangxi Province[J]. CARSOLOGICA SINICA, 2015, 34(1): 64-71. doi: 10.11932/karst20150109

Risk assessment of karst collapse areas based on the improved fish bone model: An example of the Liuzhou area in Guangxi Province

doi: 10.11932/karst20150109
  • Publish Date: 2015-02-25
  • Taking the karst collapse area in Liuzhou of Guangxi as an example, this study conducted field investigations and analysis to the major controlling and influencing factors of the karst collapse. Considering the relationship of these factors in the fish bone model and the grading influence of fractures, we established the grading buffers of fractures, and thus determined five feature layers of those comprehensive factors. Based on the improved fish bone model, we made spatial overlay analysis on the feature layers of each factor's vector data format, and prepared a zoning map of the risk prediction. It is shown that more than 75% of the discovered collapse groups fall in the areas with a high risk or a moderate risk, which approximately account for half of the total research areas and are mainly located in the central and southern portions of the study area. These areas have thin covers, and frequent karst collapse is common. Less than 25% of the discovered collapse groups are in the areas with a low risk or a very low risk, which are mainly distributed in the north and west of the study area. Urban planning and construction should select those areas with a low risk or a very low risk. This study has effectively predicted the risk of karst collapse in Liuzhou city. 

     

  • loading
  • [1]
    苏阳,曾克强,陈孟芝.桂林市岩溶土洞塌陷的形成机制及治理措施[J].矿产与地质 ,2007,21(6):692-694.
    [2]
    董兆祥,雷霆,赵文强,等.应用直接测氡法对唐山岩溶塌陷的测试研究[J].中国地质灾害与防治学报, 1997,8(4) : 28-32.
    [3]
    万继涛,杨蕊英,李公岩,等.山东省枣庄市市中区地质灾害防治规划[J] . 地质灾害与环境保护, 2003, 14(3) : 61-68.
    [4]
    赖永标,乔春生.基于支持向量机岩溶塌陷的智能预测模型[J].北京交通大学学报,2008,32(1):36-39.
    [5]
    包惠明,胡长顺.岩溶地面塌陷神经网络预测[J]. 工程地质学报, 2002, 10(3): 299-304.
    [6]
    陈静,马亚杰,朱庆杰.人工神经网络模型在岩溶塌陷安全评价中的应用[J].地质灾害与环境保护, 2005, 16(2): 139-142.
    [7]
    谭树增, 秦云虎. 模糊数学法在岩溶地面塌陷危险性评估中的应用[J].能源技术与管理, 2009(6): 30-32.
    [8]
    包恵明,胡长顺.岩溶塌陷两级模糊综合评判[J].水文地质工程地质,2001(3):49-52.
    [9]
    全望久,方星.铜陵小街地区岩溶塌陷模糊综合评判[J].中国岩溶,1992,11(4):17-20.
    [10]
    项式均.岩溶塌陷灾害的预测和评价[J] . 中国地质灾害与防治学报,1990 (1):30-36.
    [11]
    地矿部岩溶所.桂林环境工程地质[M] . 重庆: 重庆出版社,1988:30-121.
    [12]
    缪钟灵,宗凤书.桂林岩溶塌陷风险评价[J] . 中国地质灾害与防治学报,1995(2):38-40.
    [13]
    雷明堂,蒋小珍,李瑜,等. 湘潭市岩溶塌陷的综合预测与评价[J] . 中国地质灾害与防治学报,1997(S1):69-77.
    [14]
    王洪涛,王恩志,范建明,等. 岩溶塌陷区划的迭置分析方法和宏观减灾对策研究[J ] . 长春地质学院学报,1996(3):336-341.
    [15]
    郭庆海, 刘文,胡群芳,等. 盾构施工对沥青路面影响评估[J]. 郑州大学学报: 工学版,2004,25(3):70-73.
    [16]
    陈龙. 城市软土盾构隧道施工期风险分析与评估研究[D] . 上海: 同济大学,2004.
    [17]
    陈龙, 黄宏伟. 软土盾构隧道施工期风险损失分析[J] .地下空间与工程学报,2006,2(1):74-78.
    [18]
    Peck P B. Deep excavations and tunneling if soft ground[C]//Mexico: Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art Volume, Department of Transportation Federal Highway Administrator,1969:225-290.
    [19]
    Loganathan N , Poulos H G . Analytical Prediction for Tunneling Induced Ground Movements in Clays[J].Journal of Geotechnical and Geoenvironmental Engineering, 1998,124(9): 846-856.
    [20]
    中华人民共和国交通部.公路沥青路面养护技术规范(JTJ073.2-2001)[S].北京:人民交通出版社,2001.
    [21]
    Whitman R V. Organizing and Evaluating Uncertainty in Geotechnical Engineering [J] . Journal of Geotechnical Engineering,2000,126(7):583-593.
    [22]
    朱庆杰, 苏幼坡. 基岩条件对地震影响系数的影响[J].岩土工程学报,2004,26(2):198-201.
    [23]
    焦李成. 神经网络及其应用[M].西安电子科技大学出版社. 西安,1996:20-28.
    [24]
    Vladimir N Vapnik . The Nature of Statistical Learning Theory[M].NY:Spring-Verlag,1995.
    [25]
    Gunn S R . Support Vector Machines for Classification and Regression[R].University of Southampton,1998.
    [26]
    雷明堂,蒋小珍,李瑜.岩溶塌陷试验、评估与管理方法研究[J].地质灾害与环境保护,2002,13(1):18-22.
    [27]
    广西石油地质大队区调分队.柳州市区域地质调查报告[R].广西壮族自治区地质矿产局,1988.
    [28]
    冯佐海, 李晓峰,梁金城.岩溶塌陷空间指数等密图的编制及意义[J]. 中国岩溶, 1999,18(3):276-279.
    [29]
    胡瑞林, 王思敬,李焯芬,等. 唐山市岩溶塌陷区域风险评价[J]. 岩石力学与工程学报,2001,20(2):180-189.
    [30]
    吴信才. MAPGIS地理信息系统[M]. 北京: 电子工业出版社,2004:191-194.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1505) PDF downloads(1597) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return