• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 33 Issue 4
Dec.  2014
Turn off MathJax
Article Contents
HUANG Fen, XIAO Qiong, YIN Wei-lu, HU Gang, YANG Li-chao, LIU Zhi-ling, CAO Jian-hua. The effects of using N-fertilizers in soil on karst carbon sink in karst system[J]. CARSOLOGICA SINICA, 2014, 33(4): 405-411. doi: 10.11932/karst20140403
Citation: HUANG Fen, XIAO Qiong, YIN Wei-lu, HU Gang, YANG Li-chao, LIU Zhi-ling, CAO Jian-hua. The effects of using N-fertilizers in soil on karst carbon sink in karst system[J]. CARSOLOGICA SINICA, 2014, 33(4): 405-411. doi: 10.11932/karst20140403

The effects of using N-fertilizers in soil on karst carbon sink in karst system

doi: 10.11932/karst20140403
  • Publish Date: 2014-12-25
  • In previous research, it has been shown that the carbon flux of atmospheric CO2caused by terrestrial carbonate weathering has a similar magnitude with that of the global forests. However, the dissolution of carbonate rocks by nitric acid due to the overuse of N-fertilizers in agricultural areas will greatly weaken the karst carbon sinks, which proportion may up to 7%-38%. The moderate use of N-fertilizers will not only increase the crop yield, but also decrease the ratio of C/N in soil, enhance the microbial activities in soil, and promote the decomposition of organic matters, thereby increasing the CO2concentration in soil and the dissolution rate of carbonate rocks under subsoil. Therefore, it should be analyzed from two aspects to the effects of using N-fertilizers in soil on karst carbon sink in karst system.Meanwhile, the soil formed by carbonate weathering in karst areas has higher pH and base saturation, which will has a stronger buffer action to H+. This may be one of the reasons why the DIC in rivers and the Ca2+, Mg2+, etc. are not conservative in natural condition. In this view, the quantity of carbonate rocks dissolved by nitric acid may be overestimated using end element method. In addition, how much nutric acid caused by the nitrification in the soil environment of karst area can be used to dissolve the carbonate rocks and then has an effect on karst carbon sinks still needs to be studied futher. Accordingly, it is necessary to objectively evaluate the effect of N-fertilizer using in soil on karst carbon sink in karst system by considering the characteristics of soil and biogeochemical prosess of rivers and conprehensively studing the N-fertilizer using level, soil nitrification and the dissolution of carbonate rocks under subsoil and karst carbon sink process under the influence of them. And we can find the techical method of improving karst carbon sink effect through the reasearch on moderate using of N-fertilizer how to promote the karst carbon cycle process.

     

  • loading
  • [1]
    刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2): 95-102.
    [2]
    刘再华,Wolfgang Dreybrodt.碳酸盐风化碳汇与森林碳汇的对比:碳汇研究思路和方法变革的必要性[J]. 中国岩溶, 2012, 31(4): 345-348.
    [3]
    Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988-993.
    [4]
    刘再华, 张加桂. 地热 CO2—水—碳酸盐岩系统的地球化学特征及其 CO2? [J]. 中国科学D 辑:地球科学, 2000, 30(2): 209-214.
    [5]
    Du J, Cheng W, Zhang Y, et al. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China[J]. Journal of Asian Earth Sciences, 2006, 26(5): 533-539.
    [6]
    Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo–Brahmaputra river: Chemical weathering, erosion, and CO2consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2907-2935.
    [7]
    Becker J A, Bickle M J, Galy A, et al. Himalayan metamorphic CO2fluxes: quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265(3): 616-629.
    [8]
    Kerrick D M, McKibben M A, Seward T M, et al. Convective hydrothermal CO2emission from high heat flow regions[J]. Chemical Geology, 1995, 121(1): 285-293.
    [9]
    Gaillardet J, Galy A. Himalaya-carbon sink or source?[J]. Science, 2008, 320(5884): 1727-1728.
    [10]
    Barnes R T, Raymond P A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds[J]. Chemical Geology, 2009, 266(3): 318-327.
    [11]
    Gandois L, Perrin A S, Probst A. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: a column experiment[J]. Geochimica et Cosmochimica Acta, 2011, 75(5): 1185-1198.
    [12]
    Oh N H, Raymond P A. Contribution of agricultural liming to riverine bicarbonate export and CO2sequestration in the Ohio River basin[J]. Global biogeochemical cycles, 2006, 20(3).DOI:10.1029/200500265.
    [13]
    Etchanchu D, Probst J L. Evolution of the chemical composition of the Garonne River water during the period 1971–1984[J]. Hydrological sciences journal, 1988, 33(3): 243-256.
    [14]
    Semhi K, Suchet P A, Clauer N, et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry, 2000, 15(6): 865-878.
    [15]
    West T O, McBride A C. The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions[J]. Agriculture, Ecosystems & Environment, 2005, 108(2): 145-154.
    [16]
    Ali H N, Atekwana E A. The effect of sulfuric acid neutralization on carbonate and stable carbon isotope evolution of shallow groundwater[J]. Chemical Geology, 2011, 284(3): 217-228.
    [17]
    Lerman A, Wu L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106(1): 326-350.
    [18]
    Li S L, Calmels D, Han G, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ13C-DIC: examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3): 189-199.
    [19]
    Yoshimura K, Nakao S, Noto M, et al. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan — chemical weathering of carbonate rocks by deep source CO2and sulfuric acid[J]. Chemical Geology, 2001, 177(3): 415-430.
    [20]
    谢建昌. 世界肥料使用的现状与前景[J]. 植物营养与肥料学报, 1998, 4(4): 321-330.
    [21]
    李家康, 林葆, 梁国庆, 等. 对我国化肥使用前景的剖析[J]. 植物营养与肥料学报, 2001, 7(1): 1-10.
    [22]
    李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社, 1998:112-127.
    [23]
    张蔚榛, 张瑜芳, 沈荣开. 排水条件下化肥流失的研究:现状与展望[J]. 水科学进展, 1997, 8(2): 197-204.
    [24]
    李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2): 147-150.
    [25]
    曹建华, 袁道先, 章程, 等. 受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004, 32(1): 1-8.
    [26]
    Perrin A S, Probst A, Probst J L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3105-3123.
    [27]
    张兴波, 蒋勇军, 邱述兰, 等. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.
    [28]
    Jiang Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: evidence from major elements and δ13C DIC in Nandong, Southwest China[J]. Journal of contaminant hydrology, 2013, 152: 1-11.
    [29]
    Dancer W S, Peterson L A, Chesters G. Ammonification and nitrification of N as influenced by soil pH and previous N treatments[J]. Soil Science Society of America Journal, 1973, 37(1): 67-69.
    [30]
    李良谟, 潘映华, 周秀如, 等. 太湖地区主要类型土壤的硝化作用及其影响因素[J]. 土壤, 1987, 19(6): 289-293.
    [31]
    Hayatsu M, Kosuge N. Effects of difference in fertilization treatments on nitrification activity in tea soils[J]. Soil Science and Plant Nutrition, 1993, 39(2): 373-378.
    [32]
    卢玫桂, 曹建华, 何寻阳. 桂林毛村石灰土和红壤元素生物地球化学特征研究[J]. 广西科学, 2006, 13(1): 58-64.
    [33]
    Pinck L A, Allison F E, Sherman M S. Maintenance of soil organic matter: II. Losses of carbon and nitrogen from young and mature plant materials during decomposition in soil[J]. Soil Science, 1950, 69(5): 391-402.
    [34]
    Lueken H, Hutcheon W L, Paul E A. The influence of nitrogen on the decomposition of crop residues in the soil[J]. Canadian Journal of Soil Science, 1962, 42(2): 276-288.
    [35]
    Recous S, Robin D, Darwis D, et al. Soil inorganic N availability: effect on maize residue decomposition[J]. Soil Biology and Biochemistry, 1995, 27(12): 1529-1538.
    [36]
    刘臧珍, 王淑敏. 秸秆还田添加氮素调节碳氮比的研究[J]. 河北农业大学学报, 1995, 18(3): 31-35.
    [37]
    Henriksen T M, Breland T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999, 31(8): 1121-1134.
    [38]
    诸葛玉平, 张旭东, 刘启. 长期施肥对黑土呼吸过程的影响[J]. 土壤通报, 2005, 36(3): 391-394.
    [39]
    罗明, 文启凯. 不同施肥措施对棉田土壤微生物量及其活性的影响[J]. 土壤, 2002, 34(1): 53-55.
    [40]
    朱海平, 姚槐应. 不同培肥管理措施对土壤微生物生态特征的影响[J]. 土壤通报, 2003, 34(2): 140-142.
    [41]
    张庆忠, 吴文良, 王明新, 等. 秸秆还田和施氮对农田土壤呼吸的影响[J]. 生态学报, 2005, 25(11): 2883-2887.
    [42]
    王立刚, 邱建军. 黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J]. 土壤肥料, 2002 (6): 13-17.
    [43]
    杨兰芳, 蔡祖聪. 不同生长期盆栽大豆的土壤呼吸昼夜变化及其影响因子[J]. 生态学报, 2004,24:2955-2960.
    [44]
    孟凡乔, 关桂红, 张庆忠, 等. 华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J]. 环境科学学报, 2006, 26(6): 992-999.
    [45]
    陈述悦. 华北平原典型农田土壤呼吸的研究[D]. 北京林业大学, 2004.
    [46]
    Mo Jiangming, Zhangwei, Zhuweining. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology, 2008, 14(2): 403-412.
    [47]
    刘长礼, 张云, 宋超, 等. 施用农肥对岩溶溶蚀作用的影响及其生态环境意义[J]. 中国地质, 2009, 36(6): 1395-1404.
    [48]
    张云, 刘长礼, 宋博, 等. 碳酸盐岩山地土壤施用有机肥的溶蚀作用探讨[J]. 生态环境学报, 2012, 21(2): 260-267.
    [49]
    Song Chao,Liu Changli,Wang Junkun, et al. Impact of the addition of a compound fertilizer on the dissolution of carbonate rock tablets: A column experiment[J]. Applied Geochemistry, 2011, 26:170-173.
    [50]
    宋超, 刘长礼, 王俊坤, 等. 施用牛粪肥和复混肥对碳酸盐岩试片溶蚀作用影响的室内模拟研究[J]. 地球与环境, 2011, 39(4): 597-604.
    [51]
    曹建华.受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社, 2005:21-22.
    [52]
    钱琛, 蔡祖聪. 硝化作用驱动下红壤渗漏液的酸化[J]. 土壤学报, 2010 (1): 77-83.
    [53]
    McFee W W, Kelly J M, Beck R H. Acid precipitation effects on soil pH and base saturation of exchange sites[J]. Water, air, and soil pollution, 1977, 7(3): 401-408.
    [54]
    Agren A, Buffam I, Bishop K, et al. Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest[J]. Canadian journal of fisheries and aquatic sciences, 2010, 67(7): 1116-1125.
    [55]
    Drysdale R N, Taylor M P, Ihlenfeld C. Factors controlling the chemical evolution of travertine‐depositing rivers of the Barkly karst, northern Australia[J]. Hydrological Processes, 2002, 16(15): 2941-2962.
    [56]
    Drysdale R N. Factors controlling the hydrochemistry of Louie Creek, a travertine-depositing stream in the seasonally wet tropics of northern Australia[J]. Marine and Freshwater Research, 2001, 52(5): 793-804.
    [57]
    Pentecost A. Geochemistry of carbon dioxide in six travertine-depositing waters of Italy[J]. Journal of hydrology, 1995, 167(1): 263-278.
    [58]
    Wicks C M, Engeln J F. Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA[J]. Journal of Hydrology, 1997, 198(1-4): 30-41.
    [59]
    Omelon C R, Pollard W H, Andersen D T. A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic[J]. Applied Geochemistry, 2006, 21(1): 1-15.
    [60]
    Wang H,Liu Z,Zhang J,et al. Spatial and temporal hydrochemical variations of the spring-fed travertine-depositing stream in the huanglong ravine, Sichuan, SW China[J]. Acta Carsologica, 2010, 39(2):248-259.
    [61]
    周小萍, 蓝家程, 张笑微, 等. 岩溶溪流的脱气作用及碳酸钙沉积[J]. 沉积学报, 2013, 31(6).
    [62]
    王海静, 刘再华, 曾成, 等. 四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J]. 地球化学, 2009, 38(3): 307-314.
    [63]
    刘再华, 张美良, 游省易, 等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征: 以云南白水台为例[J]. 地球化学, 2004, 33(3): 269-278.
    [64]
    Suarez D L. Calcite supersaturation and precipitation kinetics in the Lower Colorado River, All‐American Canal and East Highline Canal[J]. Water Resources Research, 1983, 19(3): 653-661.
    [65]
    Chen J, Zhang D D, Wang S, et al. Factors controlling tufa deposition in natural waters at waterfall sites[J]. Sedimentary Geology, 2004, 166(3): 353-366.
    [66]
    Lerman A, Mackenzie F T. CO2air–sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle[J]. Aquatic Geochemistry, 2005, 11(4): 345-390.
    [67]
    Liu Y, Liu Z, Zhang J, et al. Experimental study on the utilization of DIC by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and evaporites, 2010, 25(1): 21-26.
    [68]
    Wang P, Hu Q, Yang H, et al. Preliminary study on the utilization of Ca2+ and HCO3- in karst water by different sources of Chlorella vulgaris[J]. Carbonates and Evaporites, 2014, 29(2): 203-210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2999) PDF downloads(1366) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return