Study on the statistical prediction model of karst groundwater table in the Jiaozuo coalmine
-
摘要: 针对研究区地下水系统结构等资料不完备,本文基于质量守恒原理和微积分原理,建立了地下水水位统计预测模型和水位延迟模型,并在焦作矿区得到验证。焦作矿区岩溶地下水对于降水响应结果表明,当延迟时间为10个月时,岩溶地下水水位与降水的相关系数最大,为0.83,而延时2个月和5个月时,相关系数分别只有0.71和0.78;模型观测孔水位预测结果表明,相关系数超过0.9的观测孔达60 %,相关系数超过0.8的观测孔则高达95 %;模型水位影响因素分析结果显示,在降雨、矿坑排水、地下水蒸发3个影响因素中,煤矿区岩溶地下水水位动态对降雨量响应最敏感,说明降雨量,尤其是长期稳定的补给量是地下水水位最主要的影响因素。该类模型适用性强,简易方便,有广阔的应用前景。Abstract: The Jiaozuo coalmine, 1 300 km2 in area, situates in the southeast edge of the Taihangshan uplift in China. The Ordovician limestone aquifer and the Carboniferous limestone aquifer are separated into the upper and the lower aquifer in the mining area by bauxitic mudstone. Because of the impact of the late period tectonic movement, the bauxitic mudstone lost the waterproof function locally, leading the upper and the lower limestone aquifers get some hydraulic connections, which not only aggravate the disaster accidents, but also increase certain difficulty for the restoration of mine water damage. In view of being no complete groundwater system structure data in the study area, the statistics prediction model and delay model of groundwater table is established on the basis of principles of mass conservation and calculus to discuss the response characteristics of karst groundwater to climate and analyze the main influence factors, and then provide theoretical support for mine water disaster prevention and control. The calculation results show that, when the time delay is 10 months, the correlation coefficient of karst groundwater table and precipitation is up to maximum 0.83, and when the time delay is 2 months or 5 months, the correlation coefficient is only 0.71 and 0.78. The predicting results of groundwater table by prediction model show that the observation hole of the correlation coefficient over 0.90 is up to 60 %, and the observation hole of the correlation coefficient over 0.80 reach 95 %. The model level influence factors analysis shows that the regime of karst groundwater table is most sensitive to rainfall in the coalmine area among the three factors — the rainfall, the mine drainage, and the groundwater evaporation. It is showed that the rainfall recharge response, especially the long-term stability recharge is the main factor influencing the groundwater table. The models, simple and convenient, have better applicability and application prospect.
-
[1] TAKAHASHI K.Research of underground water numerical analysis Memod that considering water circu1ation system [Ph D.Thesjs][D].Kyoto:Depanment of Urhan and Environmenta1 Engineering,Kyoto University,2004. [2] DUAN Q,SOROOSHIAN S,GUPTA V K.Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models [J].Water Resources Research,1992,28(4):1015-1031. [3] 刘国东,丁晶.运用BP网络预测地下水水位[J].西安地质学院学报,1997,19(2):52-57. [4] 赵延涛,姜宝良.基于BP神经网络的地下水水位预测[J].勘察科学技术,2001,(4):7-10. [5] 过仲阳,陈中原,宋保平,等.应用动量BP算法对地下水水位进行动态预测[J].华东师范大学学报(自然科学版),2000,(3):79-84. [6] 屈忠义,陈亚新,史海滨,等.地下水文预测中BP网络的模型结构及算法探讨[J].水利学报,2004,(2):88-93. [7] 魏加华,张建立,李宇,等.地下水系统BP网络模型的设计与实现[J].工程勘察,2002,(2):20-24. [8] 罗定贵,郭青,王学军.基于RBF神经网络的地下水动态模拟与预测[J].地球学报,2003,45(5):476-478. [9] 邱林,胡庆和,冯丽云,等.改进RBF神经网络在地下水动态预报中的应用[J].华北水利水电学院学报,2004,25(2):1-4. [10] 张保祥,刘青勇,卢朝霞.基于神经网络和遗传算法的济南市区岩溶地下水预报模型研究[J].山东农业大学学报(自然科学版),2004,35(3):436-441. [11] 王文圣,廖杰,丁晶.浅层地下水位预测的小波网络模型[J].土木工程学报,2004,37(12):63-66. [12] 陈葆仁,洪再吉.地下水动态及其预测[M].北京:科学出版社,1988. [13] Tanakamaru H. Parameter identification of tank model with the genetic algorithm [C]// Annuals of Disaster prevention Research Institute,1993:231-239. [14] 束龙仓,黄晶,李亚平.镇江市地下水动态变化规律研究[J].长春科技大学学报,2001,31(2):150-153. [15] 文七万.延边地区枯水期地下水动态预报[J].吉林水利,2002,232(2):18-19. [16] 王红雨.频谱分析方法在地下水动态预报中的应用[J].宁夏农学院学报,1994,15(4):30-37. [17] 杨志霞.时间序列模型在深层地下水水位预测中的应用[J].河北工程技术高等专科学校学报,2000,(3):34-38. [18] 成兴广,成绍华,马福才.三种时间序列模型在地下水动态模拟中的应用分析[J].建材地质,1997,91(2):34-36. [19] Emery Coppola Jr,Ferenc Szidarovszky,Mary Poulton,et al. Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State,Pumping,and Climate Conditions[J]. Journal of Hydrologic Engineering,2003,8(6): 348-360. [20] Abdalla Shigidi,Luis A Garcia. Parameter Estimation in Groundwater Hydrology Using Artificial Neural Networks[J]. Journal Of Computing In Civil,Engineering,2003,17(4): 281-289. [21] Daliakopoulos I N,Coulibaly P,Tsanis I K. Groundwater level forecasting using artificial neural networks[J]. Journal of Hydrology,2005,309(1-4):229-240. [22] Coppola E A,Rana A J,Poulton M M,et al. A neural network model for predicting aquifer water level elevations[J].Ground Water,2005,43(2):231-241.
点击查看大图
计量
- 文章访问数: 1447
- HTML浏览量: 331
- PDF下载量: 1415
- 被引次数: 0