Karstification under different land-use patterns in summer: A case study in the Qingmuguan karst valley, Chongqing
-
摘要: 土壤理化性质会随土地利用方式的不同而产生一系列的变化,从而影响到岩溶作用的方向和强度。通过野外溶蚀试片法,测得重庆青木关典型岩溶槽谷区6种典型土地利用方式下6个测试点夏季绝对溶蚀量和单位面积溶蚀量。结果表明,不同土地利用方式土下溶蚀速率存在显著差异,旱地>退耕林>水田>杉竹混交林>荒草地>竹林。对不同土地利用方式的不同层位溶蚀量进行统计发现:溶蚀速率基本上随深度增加而增大,但差别不大。但同一土地利用方式不同层位之间溶蚀量存在明显差别,差别最大点出现在荒草地,其壤中-20cm处溶蚀量是其表层的4.23倍。另外,各点壤中CO2含量随深度增加而增大,与溶蚀速率的变化总趋势有较好的对应关系。而土壤有机质则均随深度的增加而减少,与溶蚀速率变化总趋势相反,但与地表溶蚀速率基本成正相关。故认为有机质含量对溶蚀速率的作用机制较为复杂。Abstract: The direction and intensity of karstification could be deeply affected by soil physical and chemical variations resulted from land cover. Taking Qingmuguan karst valley area, Chongqing as an example, the total corrosion amount and corrosion amount under per unit area in 6 kinds of typical land use patterns in summer are got to study the impact of land covers on karst processes by means of limestone tablet corrosion test in the field. The results show that the corrosion rate under different land use patterns is quite different, generally, the corrosion rate decreases from tilled land, woodland exchanged from tilled land, paddy field, woodland mixed with Chinese fir-bamboo land, fallow land and bamboo land successively. It is also found that the corrosion rate largely increases with depth by means of counting up the corrosion rate at different depth. But there is obvious difference in corrosion rate among different depth under same land use pattern, especially in waste land, with the corrosion rate being 4.23 times higher under -20 cm than on the surface layer. Moreover, the CO2 increases with depth in all spot, which is better related with the regime of corrosion rate. The soil organic matter decreases with depth, which is opposite with the regime of corrosion rate but positively correlated with the corrosion rate on the surface layer. So, it is concluded that the impact of organic matter content on the corrosion rate is quite complicated.
-
Key words:
- land use /
- karstification /
- corrosion rate /
- summer /
- Qingmuguan, Chongqing
-
[1] 袁道先,刘再华,蒋忠诚,等.碳循环与岩溶地质环境[M].北京:科学出版社,2002:36-78. [2] Pulina Marian. Denudacja chemiczna Na Obszarach karst Wegl-anowego[J]. Polska Academic Nauk, Instytut Geographic, Prace Geograficzne NR105, 1974: 159. [3] Ivan Gams. Comparative research of limestone solution by means of standard tablets (Second Preliminary Report of the Commission of Karst Denudation, ISU[C]. Proceedings of 8th International Congress of Speleology, 1981, 1: 273-275. [4] Xu Shengyou, He Shiyi. The CO2 regime in soil profile and its drive to dissolution in carbonate rock area[J].CarsologicaSinica, 1996, 15(1-2): 50-57. [5] 何师意,徐胜友,张美良.岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4):319-324. [6] 刘再华,何师意,袁道先.土壤中的CO2及其对岩溶作用的驱动[J].水文地质工程地质,1998,(4):42-45. [7] 章典,师长兴.青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J].地质学报,2002,76(4):565-570. [8] 章程,谢运球,吕勇,等.不同土地利用方式对岩溶作用的影响[J].地理学报,2006,61(11):1181-1188. [9] 章程.不同土地利用土下溶蚀速率季节差异及其影响因素[J].地质论评,2010,56(1):136-140. [10] 王冬银,章程,谢世友,等.亚高山不同植被类型区的雨季岩溶溶蚀速率研究[J].地球学报,2007,28(5):488-495. [11] 王冬银,章程,谢世友,等.山区岩溶作用对土地利用方式的响应——以金佛山碧潭泉和水房泉两区岩溶系统为例[J].地学前缘,2007,14(4):222-230. [12] 杨平恒,章程,孙玉川,等.土壤环境因子对土下岩溶溶蚀速率的影响[J].中国地质,2007,34(5):920-926. [13] 袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988:23-24. [14] 汪智军,梁轩,袁道先.岩溶流域不同土壤剖面溶解性碳氮分布和淋失特征[J].水土保持学报,2010,24(6):83-93. [15] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:132-136,143-144. [16] 朱鹤健,陈健飞,陈松林,等.土壤地理学[M].北京:高等教育出版社,2010,20-26. [17] 翟心心.岩溶区土壤CO2浓度和土壤酶活性的变化规律及其关系[D].重庆:西南大学,2011. [18] 贾志清,宋红竹,陈涛,等.黄家二岔小流域土壤水分空间分布特征[J].北京林业大学学报,1999,21(5):88-91. [19] 陈洪松,傅伟,王克林,等.桂西北岩溶山区峰丛洼地土壤水分动态变化初探[J].水土保持学报,2006,20(4):136-139.
点击查看大图
计量
- 文章访问数: 2772
- HTML浏览量: 431
- PDF下载量: 1563
- 被引次数: 0