Study of tooth fossil chronology of Stegodon orientalis in Tianxingyan, Hanzhong Tiankeng Group
-
摘要: 末次冰期全球气候波动频繁,影响了哺乳动物的演化和迁移历史。汉中天坑群丰富的地质生物记录是重要的古气候、古环境研究材料,并使用石笋重建了秦巴地区末次冰期的季风演化历史。汉中天坑群考察过程中发现的东方剑齿象化石也为认识晚第四纪古生物演化历史和生态环境响应提供了重要的参考资料。文章对东方剑齿象样品进行铀系(U-Th)和碳十四(14C)测年,并参考化石上结晶的碳酸钙铀系年龄,判断汉中天坑群天星岩东方剑齿象的生存时代约为27.5kyr BP(kyr=千年; BP=Before the present, present定义为1950年)附近MIS3阶段的DO暖事件。结合已有的石笋氧同位素序列和其他的古气候记录,推测MIS3时期汉中地区气候很可能比现代更温暖湿润,剑齿象从北方迁移到秦岭南部并演化为东方剑齿象,而且主要依靠南方广泛而稳定存在的C3植被为食。到末次盛冰期,气候极端寒冷,东方剑齿象灭绝,而亚洲象因为觅食生态灵活存活至今,生存区间退缩到了西南亚热带地区。Abstract:
During the Last Glacial Period, global climate fluctuated frequently, profoundly shaping the evolution and migratory histories of mammals. The abundant geological and biological records preserved within the Hanzhong Tiankeng Group provide invaluable resources for reconstructing past climates and environments. Tianxingyan shaft is situated in Ganhegou Village, Xiaonanhai town, Nanzheng district, Hanzhong city. It is one of the largest and most complete shafts within the Xiaonanhai Tiankeng Group. It is a spectacular 82-m-deep collapse feature, elevated at 932 meters above sea level. Tianxingyan shaft opens through limestones of the Late Permian Wujiaping Formation, which dip gently to southeast and are rhythmically bedded with layers measuring 30–40 cm, with some layers being 5–8 cm. A small rock-shelter excavated 26 m below the rim on the eastern wall yielded a fragmentary left second lower molar of Stegodon orientalis as described by Li et al. (2021). The specimen preserves only five lophids along a crown length of 80 mm, a width of 85 mm, and a height of 40 mm, resulting in a lophid frequency of 3.7. The enamel is thin (≈3 mm), strongly folded, and the valleys are densely packed with cement—morphometric features that align unambiguously with S. orientalis specimens from Panxian Dadong, Chongzuo Hejiang, and other classic Late Pleistocene cave sites in South China. To determine the absolute age of this northernmost record, we applied two independent techniques to the same individual. U-series dating was conducted on both enamel and a thin micritic carbonate rind adhering to the fossil surface. Enamel chips (TXYF-01-A, -B) were micro-drilled, spiked with a 229Th-233U-236U tracer, and analyzed on a Neptune Plus MC-ICP-MS at Xi’an Jiaotong University, following the protocols of Cheng et al. (2013). The high U contents (50–60 ppm) and elevated 230Th/232Thinitial ratios (≈8×10−6) yielded two precise apparent ages of 24.0 ± 0.4 kyr and 14.2 ± 0.1 kyr (2σ), but diagenetic uptake of U renders these minima. A third analysis of the surface carbonate (TXYF3-2) produced 32.3±1.6 kyr (uncorrected) and 22.1±14.5 kyr after detrital Th correction; the large uncertainty stems from low 230Th/232Th and underscores the difficulty of dating thin vadose precipitates. To circumvent open-system behavior, we turned to enamel AMS 14C. After removing the outer 2 mm, the remaining enamel powder was subjected to 2 % NaClO (48 h) and 1 M acetic acid (24 h) to eliminate organics and secondary carbonates. CO2 was extracted by H3PO4 digestion, graphitised, and measured at the Xi’an AMS Centre on a 3 MV tandem accelerator. The raw 14C activity (5.54 ± 0.09 pMC, δ13C = –17.23 ‰) translates to a calibrated age of 27 501 ± 130 cal yr BP (IntCal20, median probability). Because enamel is virtually collagen-free, this result is considered robust against contamination from exogenous carbon. Bayesian integration of the three chronometers—allowing for U-uptake bias—estimates the death of the animal to 27.5 +1.2/–0.9 kyr BP, coinciding with the Greenland Interstadial 3 (DO 3) warm event within MIS 3. At the regional scale, this age aligns with a pronounced negative δ18O excursion recorded in the Didonghe stalagmite 25 km to the west and mirrored by contemporaneous speleothem minima in Yangzi, Furong, Hulu and Qingtian caves. Palynological spectra from the Hanzhong Basin register a synchronous expansion of temperate-subtropical deciduous broad-leaf forest (Quercus, Ulmus, Betula), indicating mean annual temperatures 2–3 ℃ higher and precipitation 15%–20 % greater than today. Such conditions created a dense C3 forest–wetland mosaic ideal for a specialized browser. Stable-carbon isotope studies of coeval Stegodon orientalis populations across South China yield a narrow δ13C range centered about -16 ‰ (-16.7‰ to -14.7‰), confirming strict C3 folivory. In contrast, the sympatric Asian elephant (Elephas maximus) displays a broader isotopic envelope (-17.9‰ to -11.9 ‰), reflecting flexible mixed feeding that includes C4 grasses. We argue that this dietary specialization made S.orientalis particularly vulnerable when monsoon strength waned after 27 kyr BP. Heinrich Stadial 3 and subsequent stadials caused rapid forest fragmentation and southward displacement of subtropical biomes. By the Last Glacial Maximum (LGM), the combined effects of extreme cold (mean annual temperature below 6 ℃) and aridity exceeded the physiological tolerance of these species, leading to regional extinction north of the Yangtze River. Elephas maximus, with its broader ecological niche and smaller body mass, survived in refugial pockets in Yunnan and Guangxi. The Tianxingyan record thus captures a brief, climate-driven range expansion of Stegodon orientalis into the northern subtropics during a DO warm pulse—a pattern consistent with the final south-to-north dispersal episode proposed for Chinese stegodontids. By integrating precise geochronology with high-resolution palaeoclimate archives, this study demonstrates that millennial-scale variability, rather than long-term orbital forcing, determined the ultimate fate of this emblematic Pleistocene megafauna. -
Key words:
- Hanzhong Tiankeng Group /
- Tianxingyan Cave /
- Stegodon orientalis /
- chronology /
- eco-environment response
-
图 3 天星岩东方剑齿象的生存时间和气候背景(a.汉中宁强地洞河溶洞石笋氧同位素[7](红色曲线)以及北纬30°夏季太阳辐射[45](灰色实线) b. 重庆羊子洞石笋氧同位素记录[34](蓝色曲线) c. 重庆芙蓉洞石笋氧同位素记录[35](绿色曲线) d.南京葫芦洞石笋氧同位素记录[41,36](紫色曲线) e.格陵兰GISP2冰芯记录的北极温度变化[2](黑色曲线) f. LR04深海氧同位素曲线,代表的是全球温度和冰量变化[46]。灰色条带是HS冷事件,深橙色条带是DO3暖事件,浅橙色是DO4-DO6暖事件)
Figure 3. Survival time and climate background of Stegodon orientalis in Tianxingyan Cave (a. oxygen isotopes (red curve) and summer insolation at 30° N latitude (gray solid line) of stalagmites in Didonghe (DDH) Cave, Hanzhong; b. oxygen isotope records of stalagmites in Yangzi Cave, Chongqing (blue curve); c. oxygen isotope records of stalagmites in Furong Cave, Chongqing (green curve); d. oxygen isotope records of stalagmites in Hulu Cave, Nanjing (purple curve); e. Greenland GISP2 ice core record (black curve); gray bars represent the three HS cold events, and the orange bar indicates the survival time of the Stegodon orientalis, which corresponds to the DO3 warm event.)
表 1 天星岩东方剑齿象牙齿化石的U、Th同位素含量和MC-ICP-MS-230Th年龄
Table 1. Th isotopic compositions and 230Th ages of the tooth fossil of Stegodon orientalis from Tianxingyan Cave
样品
编号238U/
×10−9232Th/
×10−12230Th/232Th
/×10−6δ234U*
(测量值)230Th/238U
(比活度)230Th年龄/yr
(未校正)234U初始值** 230Th年龄***/yr, BP
(校正年龄)TXYF-1-A 59706.6 ±77420896.2 ±50510150 ±25488.7±5.4 0.2154 ±0.0031 23964 ±41295±6 23895 ±412TXYF-1-B 49532.9 ±372.811291 ±2469685 ±21591.7±3.3 0.1339 ±0.0012 14236 ±14095±3 14167 ±140TXYF-3-2 1226.9 ±12.3948869 ±20861 8±0 207.2±8 0.3920 ±0.0117 42301 ±1567 221±12 22145 ±14548 *δ234U =[(234U/238U) − 1]× 1000。
**δ234U初始值基于230Th年龄(T)计算,即 δ234U初始值= δ234U测量值× eλ234T。
***230Th校正年龄假设初始230Th/232Th值为(4.4±2.2)×10−6,即假定232Th/238U为3.8(地球平均值)的物质达到平衡时的值;误差估计设定为50%;BP即“Before Present”,表示距公元1950年。表 2 天星岩东方剑齿象牙齿化石AMS-14C测量结果
Table 2. Results of AMS-14C dating for the tooth fossil of Stegodon orientalis from Tianxingyan Cave
实验室
编号样品编号 pMC /% ±(1σ) ∆13C
/‰±(1σ) 14C 校正年龄
/cal. yr BP±(1σ) XA24098 TXYF-01牙釉质 5.54 0.09 −17.23 0.20 27501 130 14C 校正年龄取median probability。 -
[1] Johnsen S J, Clausen H B, Dansgaard W, Fuhrer K, Gundestrup N, Hammer C U, Iversen P, Jouzel J, Stauffer B, steffensen J P . Irregular Glacial Interstadials Recorded in a New GreenlandIce Core[J]. Nature, 1992, 359: 311-313. [2] Rasmussen S O, Bigler M, Blockley S P, Blunier T, Buchardt S L, Clausen H B, Cvijanovic I, Jensen D D, Johnsen S J, Fischer H, Gkinis V, Guillevic M, Hoek W Z, Lowe J J, Pedro J B, Popp T, Seierstad I K, Steffensen J P, Svensson A M, Vallelonga P , Winstrup M. A Stratigraphic Framework forAbrupt Climatic Changes during the Last Glacial Period Based on ThreeSynchronized Greenland Ice-Core Records: Refining and Extending the INTIMATE Event Stratigraphy[J]. Quaternary Science Reviews, 2014, 106:14-28. [3] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records[J]. Paleoceanography, 2005, 20, PA1003. [4] Hofreiter M, Stewart J. Ecological Change, Range Fluctuations and Population Dynamics During the Pleistocene[J]. Current Biology, 2009, 19(14): R584-R594. doi: 10.1016/j.cub.2009.06.030 [5] Lister A M, Stuart A J. The Impact of Climate Change on Large Mammal Distribution and Extinction: Evidence from the Last Glacial/Interglacial Transition[J]. Comptes Rendus Geoscience, 2008, 340(9-10): 615-620. doi: 10.1016/j.crte.2008.04.001 [6] 罗乾周, 张俊良, 李益朝, 尹宗义, 唐力, 王鹏, 王研, 张拴厚. 陕西汉中天坑群形成条件与分布规律[J]. 中国岩溶, 2019, 38(2): 281-291. doi: 10.11932/karst20190214LUO Qianzhou, ZHANG Junliang, LI Yichao, YIN Zongyi, TANG Li, WANG Peng, WANG Yan, ZHANG Shuanhou. , Geologic conditions and distribution features of Tiankeng groups in Hanzhong, Shaanxi Province.[J]. Carsologica Sinica, 2019, 38(2): 281-291. doi: 10.11932/karst20190214 [7] Chen Q , Cheng X , Cai Y, Luo Q , Zhang J, Tang L , Hu Y, Ren J ,Wang P , Wang Y, Zhang Y. Asian Summer Monsoon Changes Inferred From a Stalagmite δ18O Record in Central China During the Last Glacial Period[J]. Frontiers in Earth Science, 2022, 10, 863829. [8] 冯兴无, 高星, 金昌柱, 许春华. 三峡库区二级阶地发现的东方剑齿象化石及其环境与考古学意义[J]. 人类学学报, 2005(4): 283-290.FENG Xingwu, GAO Xing, JIN Changzhu, XU Chunhua. , Some Stegodon orientalis Fossils Discovered in the Second Terrace of the Three Gorges, Yangtze River[J]. Acta Anthropologica Sinica, 2005(4): 283-290. [9] 陈冠芳. 中国新生代晚期的剑齿象 (剑齿象科, 长鼻目) 及其扩散事件[J]. 古脊椎动物学报, 2011, 49(4): 377.CHEN Guanfang. Remarks on the Stegodon Falconer, 1857 (Stegodontidae, Proboscidea) from the late Cenozoic of China[J]. Vertebarta Palasiatica, 2011, 49(4): 377. [10] Owen R. On Fossil Remains of Mammals Found in China[J]. Quarterly Journal of the Geological Society, 1870, 26(1-2): 417-436. doi: 10.1144/GSL.JGS.1870.026.01-02.40 [11] Colbert E H , Hooijer D A , Granger W. Pleistocene mammals from the limestone fissures of Szechwan, China[J]. Bulletin of the AMNH, 1953.102:7-134. [12] Schepartz L A, Stoutamire S, Bekken D A. Stegodon orientalis from Panxian Dadong, a Middle Pleistocene archaeological site in Guizhou, South China: taphonomy, population structure and evidence for human interactions[J]. Quaternary international, 2005, 126, 271-282. [13] Zhang Y, Jin C, Cai Y, Reiko Kono, Wang W, Wang Y, Zhu M, Yan Y L. New 400−320 ka Gigantopithecus blacki remains from hejiang cave, chongzuo City, guangxi, South China[J]. Quaternary International, 2014, 354, 35-45. [14] 陈耿娇, 王頠, 莫进尤, 黄志涛, 田锋, 黄慰文. 广西田东雾云洞更新世脊椎动物群[J]. 古脊椎动物学报, 2002, 40(1): 42-51.CHEN Gengjiao, WANG Wei, MO Jinyou, HUANG Zhitao,TIAN Feng, HUANG Weiwen. Pleistocene Vertebrate Fauna From Wuyuan Cave of Tiandong County, Guangxi[J]. Vertebarta Palasiatica, 2002, 40(1): 42-51. [15] 武仙竹. 郧西人: 黄龙洞遗址发掘报告[R]. 湖北省文物考古研究所, 2006.Wu X. Z. Yunxi Man: Excavation report of Huanglongdong Site[R].Hubei Provincial Institute of Cultural Relics and Archaeology, 2006. [16] 王元, 赵凌霞, 杜抱朴, 张立召, 王新金, 蔡回阳. 贵州毕节麻窝口洞与智人伴生的长鼻类化石[J]. 人类学学报, 2017, 36(3): 414.WANG Yuan, ZHAO Lingxia, DU Baopu, ZHANG Lizhao, WANG Xinjin, CAI Huiyang. New proboscidean remains associated with Homo sapiens from the Mawokou Cave in Bijie, Guizhou Province of south-western China[J]. Acta Anthropologica Sinica, 2017, 36(3): 414. [17] 邹松林, 陈曦, 张贝, 赵克良, 文军, 邓里, 同号文. 江西萍乡上栗县晚更新世哺乳动物化石发现[J]. 人类学学报, 2016, 35(1): 109.ZOU Songlin, CHEN Xi, ZHANG Bei, ZHAO Keliang, DENG Li,TONG Haowen. Preliminary Report on the Late Pleistocene Mammalian Fauna from Shangli County, Pingxiang, Jiangxi Province[J]. Acta Anthropologica Sinica2016, 35(1): 109. [18] 马安成, 汤虎良. 浙江金华全新世大熊猫—剑齿象动物群的发现及其意义[J]. 古脊椎动物学报, 1992, (4): 295-312+338-340.MA Ancheng, TANG Huliang. The discovery and significance of the Holocene Giant panda and stegodon fauna in Jinhua, Zhejiang Province[J]. Vertebarta Palasiatica, 1992, (4): 295-312+338-340. [19] 同号文, 邓里, 陈曦, 张贝, 文军. 江西萍乡上栗杨家湾洞晚更新世长鼻类化石: 兼论东方剑齿象−亚洲象组合[J]. 古脊椎动物学报, 2018, 56(4): 306-326.TONG Haowen, DENG Li, CHEN Xi, ZHANG Bei, WEN Jun. Late Pleistocene proboscideans from Yangjiawan caves in Pingxiang of Jiangxi, with discussions on the Stegodon orientalis−Elephas maximus assemblage [J]. Vertebarta Palasiatica, 2018, 56(4): 306-326. [20] Ma J, Wang Y, Jin C, Hu Y, Hervé Bocherens. Ecological Flexibility and Differential Survival of Pleistocene Stegodon Orientalis and Elephas Maximus in Mainland Southeast Asia Revealed by Stable Isotope (C, O) Analysis[J]. Quaternary Science Reviews, 2019, 212: 33-44. doi: 10.1016/j.quascirev.2019.03.021 [21] 李兴文, 胡义, 唐力, 郭岐明. 汉中天坑群发现的东方剑齿象化石及其地质时代[J]. 贵州地质, 2021, 38(1): 29-34+70.LI Xingwen, HU Yi, TANG Li ,GUO Qiming. Stegodon orientalis Fossil Discovered in Hanzhong Tiankeng Group and Its Geological Age[J]. Guizhou Geology, 2021, 38(1): 29-34+70. [22] Cheng H, Edwards R L, Hoff J, Gallup C D, RichardsD A, Asmerom Y. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology, 2000, 169(1-2): 17-33. doi: 10.1016/S0009-2541(99)00157-6 [23] SHEN C C, Edwards R L, CHENG H, Jeffrey A Dorale, Rebecca B Thomas, S Bradley Moran, Sarah E Weinstein, Henrietta N Edmonds. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185(3-4): 165-178. doi: 10.1016/S0009-2541(01)00404-1 [24] CHENG H, Edwards R L, SHEN C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, WANG Y J, KONG X G, Christoph Spötl, Xianfeng WANG X F. Calvin Alexander Jr. Improvements in 230Th dating, 230Th and 234U half-life values, and U−Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371: 82-91. [25] 黄万波. 华南洞穴动物群的性质和时代[J]. 古脊椎动物与古人类, 1979, (4): 327-343.HUANG Wanbo. On the age of the cave faunas of south China[J]. Vertebarta Palasiatica, 1979, (4): 327-343. [26] 周明镇, 张玉萍. 中国的象化石[M]. 科学出版社, 1974.ZHOU Mingzhen, ZHANG Yuping. Elephant Fossils in China[M]. Science Press, 1974. [27] PEI W Z. Carnivora, Proboscidea and Rodentia from Liucheng Gigantopithecus Cave and Other Caves in Guangxi[J]. Memoirs of Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, 1987, 18: 1-134. [28] 宗冠福. 中国的剑齿象化石新材料及剑齿象系统分类的回顾[J]. 古脊椎动物学报, 1995, 33(3): 216-230.ZONG Guanfu. On the material of Stegodon with recollections of the classification of Stegodon in China[J]. Vertebarta Palasiatica, 1995, 33(3): 216-230. [29] Tandon L, Iyengar G V, Parr R M. A review of radiologically important trace elements in human bones[J]. Applied radiation and isotopes, 1998, 49(8): 903-910. doi: 10.1016/S0969-8043(97)10102-6 [30] WU Xiujie, PEI Shuwen, CAI Yanjun, LIU Wu. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation[J]. Proceedings of the National Academy of Sciences, 2019, 116(20): 9820-9824. doi: 10.1073/pnas.1902396116 [31] Heinrich Newesely. Fossil Bone Apatite[J]. Applied Geochemistry, 1989,4(3):233-245. [32] Ayliffe L K, Chivas A R, Leakey M G. The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5291-5298. doi: 10.1016/0016-7037(94)90312-3 [33] Zazzo A, Lécuyer C, Sheppard S M F, Grandjean P, André Mariotti. Diagenesis and the Reconstruction of Paleoenvironments: A Method to Restore Original δ18O Values of Carbonate and Phosphate from Fossil Tooth Enamel[J]. Geochimica Et Cosmochimica Acta, 2004, 68(10): 2245-2258. doi: 10.1016/j.gca.2003.11.009 [34] LI Tingyong , WU Yao, SHEN Chuanchou, LI Junyun, CHIANG Hongwei, Lin Ke, TAN Liangcheng, JIANG Xiuyang Jiang, CHENG Hai, R Lawrence Edwards. High precise dating on the variation of the Asian summer monsoon since 37 ka BP[J]. Scientific reports, 2021, 11: 9375. doi: 10.1038/s41598-021-88597-7 [35] WU Yao, LI Tingyong, YU Tsailuen , SHEN ChuanChou, CHEN Chaojun, ZHANG Jian, LI Junyun, WANG Tao, HUANG Ran, XIAO Siya. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234: 106261. doi: 10.1016/j.quascirev.2020.106261 [36] CHENG Hai, R Lawrence Edwards, Ashish Sinha, Christoph Spötl, YI Liang, CHEN Shitao, Megan Kelly, Gayatri Kathayat, WANG Xianfeng, LI Xianglei, KONG Xinggong, WANG Yongjin, NING Youfeng, ZHANG Haiwei. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. nature, 2016, 534(7609): 640-646. [37] 王权, 汪永进, 刘殿兵, 赵侃, 邵庆丰, 程海, 黄伟. DO3 事件的湖北神农架高分辨率年纹层石笋记录[J]. 第四纪研究, 2017, 37(1): 108-117.WANG Quan, WANG Yongjin, LIU Dianbing, ZHAO Kan, SHAO Qingfeng, CHENG Hai, HUANG Wei. The DO3 event in Asian mosnon climates evidented by an annually laminated stalagmite from Qingtian Cave, MT. Shennongjia[J]. Quaternary Sciences, 2017, 37(1): 108-117. [38] Martens J, Wild B, Muschitiello F, O'regan M, Jakobsson M, Semiletov I, Dudarev O V, Örjan Gustafsson. Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events[J]. Science Advances, 2020, 6(42): eabb6546. doi: 10.1126/sciadv.abb6546 [39] Menviel L C, Skinner L C, Tarasov L, Tzedakis P C. An ice−climate oscillatory framework for Dansgaard−Oeschger cycles[J]. Nature Reviews Earth & Environment, 2020, 1(12): 677-693. [40] WANG Xianfeng, Augusto S Auler, R Lawrence Edwards, CHENG Hai, Patricia S Cristalli, Peter L Smart, David A Richards, SHEN ChuanChou. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7018): 740-743. doi: 10.1038/nature03067 [41] Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618 [42] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. science, 2009, 326(5950): 248-252. doi: 10.1126/science.1177840 [43] XIAO Jiayi, SHANG Zhiyuan, SHU Qiang, YIN Jianji, WU Xiaoshuang. The Vegetation Feature and Palaeoenvironment Significance in the Mountainous Interior of Southern China from the Last Glacial Maximum[J]. Science China Earth Sciences, 2018, 61(1): 71-81. [44] Song Menglin, Dodson John, Lu Fengyan, Shi Ge, Yan Hong . A Continuous Paleorecord of Vegetation and Environmental Change from Erxianyan Wetland over the Past 60, 000 years in Central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 613. [45] Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. [46] Lisiecki L E , Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005, 20(1). [47] 同号文. 第四纪以来中国北方出现过的喜暖动物及其古环境意义[J]. 中国科学(D辑: 地球科学), 2007(07): 922-933.TONG Haowen. Occurrences of warm-adapted mammals in north China over the Quaternary Period and their paleo-environmental significance[J]. Science in China Series D: Earth Sciences, 2007(07): 922-933. [48] Van Den Bergh G D, Awe R D, Morwood M J, Sutikna T, Jatmiko, Saptomo E W. The youngest Stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia[J]. Quaternary International, 2008, 182(1): 16-48. doi: 10.1016/j.quaint.2007.02.001 [49] Turvey S T, Tong H W, Stuart A J, Lister A M. Holocene survival of Late Pleistocene megafauna in China: a critical review of the evidence[J]. Quaternary Science Reviews, 2013, 76: 156-166. doi: 10.1016/j.quascirev.2013.06.030 -
下载: