• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶区地下水污染水力通道注浆封堵现场试验研究

姬之皓 陈世万 吴佼基 余会云 吴攀 马蓝建

姬之皓,陈世万,吴佼基,等. 岩溶区地下水污染水力通道注浆封堵现场试验研究[J]. 中国岩溶,2025,44(5):1-15 doi: 10.11932/karst2025y021
引用本文: 姬之皓,陈世万,吴佼基,等. 岩溶区地下水污染水力通道注浆封堵现场试验研究[J]. 中国岩溶,2025,44(5):1-15 doi: 10.11932/karst2025y021
JI Zhihao, CHEN Shiwan, WU Jiaoji, YU Huiyun, WU Pan, MA Lanjian. Field experiment on hydraulic channel sealing via grouting to prevent groundwater pollution in karst region[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2025y021
Citation: JI Zhihao, CHEN Shiwan, WU Jiaoji, YU Huiyun, WU Pan, MA Lanjian. Field experiment on hydraulic channel sealing via grouting to prevent groundwater pollution in karst region[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2025y021

岩溶区地下水污染水力通道注浆封堵现场试验研究

doi: 10.11932/karst2025y021
基金项目: 贵州省重大科技成果转化项目“地下河走向物理化学探测及数字地图绘制技术集成与应用”(黔科合成果[2023]重大 006);贵州省重大专项“岩溶地区抽水蓄能关键技术研究与应用”(黔科合重大专项[2024] 008)
详细信息
    作者简介:

    姬之皓(2000—)男,硕士研究生,主要从事地质工程方面研究。E-mail:404490029@qq.com

    通讯作者:

    陈世万(1990—)男,副教授,博士,硕士研究生导师,主要从事地质工程及岩石力学方面研究。E-mail:swchen@gzu.edu.cn

Field experiment on hydraulic channel sealing via grouting to prevent groundwater pollution in karst region

  • 摘要: 岩溶区地下水系统复杂,岩溶通道发育,为封堵矿区地下水污染优势水力通道,量化评价注浆效果,本文以贵州紫木凼矿区为研究对象,对已探明的岩溶通道开展帷幕注浆封堵试验,并在注浆全过程利用电阻率法实时原位监测,评价注浆封堵效果。现场试验显示:(1)注浆过程地层电阻率升高,注浆井附近电阻率升高更为明显;(2)注浆井半径2 m区域内,浆液最大扩散面积达99.2%;(3)基于阿尔奇公式,将电阻率数据转换为地层孔隙率,结果表明注浆后扩散范围内的地层孔隙率最高降低了65.7%,平均孔隙率最高降低39.9%。研究表明,采用电阻率监测可实现对岩溶通道注浆封堵效果的实时监测和评价,为评价岩溶区地下水污染优势通道帷幕注浆封堵效果提供技术支持。

     

  • 图  1  矿区水文地质图

    Figure  1.  The hydrogeological map of the mining area

    图  2  紫木凼金矿水文地质概念模型

    Figure  2.  The hydrogeological conceptual model of the Zimudang Gold Mine

    图  3  ZJ04钻孔柱状图

    Figure  3.  ZJ04 Drilling Column Chart

    图  4  ZJ05顶板钻孔位置电视结果

    Figure  4.  Results of Television Survey at Roof Drilling Location

    图  5  注浆试验示范研究区

    Figure  5.  Grouting Test Demonstration Research Area

    图  6  注浆过程相关照片

    Figure  6.  Photos of the Grouting Process

    图  7  高密度电阻率法和瞬变电磁法测线布置图

    Figure  7.  Layout of Electrical Resistivity Tomography and Transient Electromagnetic Method Survey Line

    图  8  测线L1剖面高密度电法反演结果

    Figure  8.  Survey Line L1 Profile Electrical Resistivity Tomography Inversion Results

    图  9  瞬变电磁探测结果图

    Figure  9.  Transient Electromagnetic Method Survey Results Map

    图  10  测线孔隙率分布图

    Figure  10.  Survey Line Porosity Distribution Map

    图  11  注浆前后孔隙率变化图

    Figure  11.  Porosity Change Map Before and After Grouting

    图  12  扩散面积和孔隙率变化量化分析图

    Figure  12.  Quantitative Analysis Chart of Diffusion Area and Porosity Change

    表  1  钻孔岩溶发育特征

    Table  1.   Development characteristics of karst in boreholes

    钻孔编号深度/m岩溶发育特征
    ZJ0150岩溶发育较强烈
    ZJ0260岩溶发育较强烈
    ZJ03608~9 m出现岩溶裂隙,岩溶发育强烈
    ZJ0410010~11 m出现岩溶裂隙,岩溶发育强烈
    ZJ0510023~30 m岩层裂隙发育较强烈,在34 m、50 m范围有较多溶洞生成,岩溶发育强烈
    ZJ066023~24 m出现岩溶裂隙,岩溶发育强烈
    ZJ07509~10 m出现岩溶裂隙,岩溶发育强烈
    ZJ0850岩溶发育较强烈
    JC0150岩溶发育较强烈
    下载: 导出CSV

    表  2  注浆参数表

    Table  2.   Grouting Parameter Table

    参数名称规格/方法
    注浆压力3.5 MPa
    注浆量39.6 m3
    浆液配比水泥∶水(1∶2)
    注浆方式间歇注浆
    注浆孔直径110 mm
    注浆效果监测高密度电阻率法、瞬变电磁法
    下载: 导出CSV

    表  3  测线探测结果分析

    Table  3.   Survey Line Detection Results Analysis

    测线 注浆效果 注浆影响范围 备注
    S1 在注浆过程中较明显 1518~1530 m段 岩溶发育较强烈
    S2 1526 m以上无明显效果 ,1526 m以下效果明显 1510~1526 m段 下部岩溶发育较强烈
    S3 全段效果明显 1498~1535 m全段 岩溶发育较强烈
    S4 全段效果明显 1498~1535 m全段 岩溶发育较强烈
    S5 上部效果显著 1498~1535 m全段 岩溶发育强烈
    S6 上部效果明显 1514~1533 m段 下部岩溶发育不明显
    S7 注浆钻孔附近明显 全段均有影响 岩溶发育较强烈
    S8 在注浆过程中较明显 1494~1507 m段 岩溶发育较强烈
    S9 无明显效果 浆液注入钻孔时挤压水渗入附近岩层中
    S10 无明显效果 测线距离注浆井较远
    S11 下部效果明显 下部岩溶发育较强烈
    下载: 导出CSV
  • [1] 吴华英, 李腾芳, 程瑞瑞, 黄奇波, 潘晓东. 我国岩溶地下水受污染的原因与污染特征[J]. 中国矿业, 2021, 30(S1): 101-104. doi: 10.12075/j.issn.1004-4051.2021.S1.095

    WU Huaying, LI Tengfang, CHENG Ruirui, HUANG Qibo, PAN Xiaodong. Causes and characteristics of the pollution of karst groundwater in China[J]. China Mining Magazine, 2021, 30(S1): 101-104. doi: 10.12075/j.issn.1004-4051.2021.S1.095
    [2] 饶磊. 西南岩溶区某锶矿场地下水污染模拟及风险评价[D]. 重庆: 重庆师范大学, 2019

    RAO Lei. Numerical simulation and risk assessment of groundwater pollutants in a strontium mine in southwest karst area[D]. Chongqing: Chongqing Normal University, 2019.
    [3] 夏冰, 高红远, 徐良才, 徐超, 易素娟. 金属矿区地下水污染防治技术研究[J]. 中国金属通报, 2022(10): 1-3. doi: 10.3969/j.issn.1672-1667.2022.10.001

    XIA Bing, GAO Hongyuan, XU Liangcai, XU Chao, YI Sujuan. Research on techniques for preventing and controlling groundwater pollution in metal mining areas[J]. China Metal Bulletin, 2022(10): 1-3. doi: 10.3969/j.issn.1672-1667.2022.10.001
    [4] 王爽. 金属矿区地下水污染防治措施研究[J]. 清洗世界, 2024, 40(8): 1-3. doi: 10.3969/j.issn.1671-8909.2024.08.060

    WANG Shuang. Research on prevention and control measures for groundwater pollution in metal mining areas[J]. Cleaning World, 2024, 40(8): 1-3. doi: 10.3969/j.issn.1671-8909.2024.08.060
    [5] 张豪哲, 李文, 杜明泽, 姜鹏, 李江华. 闭坑矿山地下水污染防治技术研究现状和展望[J]. 煤炭工程, 2022, 54(11): 170-176.

    ZHANG Haozhe, LI Wen, DU Mingze, JIANG Peng, LI Jianghua. Progress and prospect of groundwater pollution control technology for closed mine[J]. Coal Engineering, 2022, 54(11): 170-176.
    [6] LI shucai, Qi Yanhai, Li Zhaofeng, LI Haiyan, ZHANG Jian. A novel treatment method and construction technology of the pipeline gushing water geohazards in karst region[J]. Tunnelling and Underground Space Technology, 2021, 113: 103939. doi: 10.1016/j.tust.2021.103939
    [7] Yushan ZHU, Xiaoling WANG, Wenlong CHEN, Hui GUO, Dong LI. A variable weight-based interval type-2 fuzzy rough comprehensive evaluation method for curtain grouting efficiency assessment[J]. Neural Computing and Applications, 2022, 34: 7851-7879. doi: 10.1007/s00521-021-06864-0
    [8] Tzu-Pin WANG, Yao-Tsung CHEN, Chien-Chih CHEN, Tien-Hsing TUNG, Shih-Nan CHENG, Chun-Yi YU. Application of cross-hole electrical resistivity tomography to groundwater contaminated remediation site[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2020, 31: 507-521. doi: 10.3319/TAO.2019.06.17.01
    [9] 段乔文, 俞富有, 张天柏, 何伟, 段春林. 滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想[J]. 中国岩溶, 2022, 41(2): 287-297. doi: 10.11932/karst20220209

    DUAN Qiaowen, YU Fuyou, ZHANG Tianbai, HE Wei, DUAN Chunlin. Karst leakage and its sealing at Wanzi reservoir in Luoping county on the plateau of eastern Yunnan[J]. Carsologica Sinica, 2022, 41(2): 287-297. doi: 10.11932/karst20220209
    [10] 朱健玲, 赵学付, 施展华, 柯平超. 地下水抽出处理技术在离子型稀土矿山的工程应用[J]. 有色金属(冶炼部分), 2022(2): 60-68,82.

    ZHU Jianling, ZHAO Xuefu, SHI Zhanhua, KE Pingchao. Application of groundwater pumping treatment technology in ion-type rare earth mine[J]. Nonferrous Metals(Extractive Metallurgy), 2022(2): 60-68,82.
    [11] 赵江. 层状非均质粘性土防污性能研究及固废原位处置的地下水污染防控系统构建[D]. 武汉: 中国地质大学, 2019.

    ZHAO Jiang. Study on antifouling property of layered heterogeneous clay soil and construction of groundwater pollution control system for in-situ disposal of solid waste[D]. Wuhan: China University of Geosciences (Wuhan), 2019.
    [12] 向甲甲. 水泥土阻隔墙阻控地下水污染[J]. 环境工程, 2021, 39(9): 63-68,91.

    XIANG Jiajia. Groundwater pollution control by cement soil barrier wall[J]. Environmental Engineering, 2021, 39(9): 63-68,91.
    [13] 陶望雄, 贾朋涛. 矿山帷幕注浆与水利工程基岩帷幕灌浆的差异性探讨[J]. 现代矿业, 2020, 36(5): 82-84,102. doi: 10.3969/j.issn.1674-6082.2020.05.023

    TAO Wangxiong, JIA Pengtao. Discussion on the difference of curtain grouting in mine and curtain grouting in hydraulic engineering[J]. Modern Mining, 2020, 36(5): 82-84,102. doi: 10.3969/j.issn.1674-6082.2020.05.023
    [14] 程峰, 苏夏征, 周洁军, 郭尚其. 岩溶区尾矿库渗漏机理与综合防治技术: 以环江北山铅锌矿尾矿库为例[J]. 中国岩溶, 2017, 36(2): 242-247.

    CHENG Feng, SU Xiazheng, ZHOU Jiejun, GUO Shangqi. Leakage mechanism and comprehensive prevention control technology of tailing pond in karst areas[J]. Carsologica Sinica, 2017, 36(2): 242-247.
    [15] 丁冠涛, 刘玉仙, 孙中瑾, 韩昱, 张学斌, 刘玉想, 魏善明, 曹光明, 江露露. 北方某废弃矿区地下水污染帷幕注浆应急处置研究[J]. 地质学报, 2019, 93(S1): 291-300. doi: 10.1111/1755-6724.14101

    DING Guantao, LIU Yuxian, SUN Zhongjin, HAN Yu, ZHANG Xuebin, LIU Yuxiang, WEI Shanming, CAO Guangming, JIANG Lulu. Emergency disposal of groundwater contamination curtain grouting in an abandoned mining area in North China[J]. Acta Geologica Sinica, 2019, 93(S1): 291-300. doi: 10.1111/1755-6724.14101
    [16] 汤振, 蒋小珍, 陈立根, 雷明堂, 马骁, 吴晟堂. 龙门县某石灰岩采石场帷幕止水工程及注浆效果评价[J]. 中国岩溶, 2022, 41(1): 47-58. doi: 10.11932/karst20220102

    TANG Zhen, JIANG Xiaozhen, CHEN Ligen, LEI Mingtang, MA Xiao, WU Shengtang. Groundwater sealing by grouting curtain technique and its grouting effect evaluation of a limestone quarry in Longmen county[J]. Carsologica Sinica, 2022, 41(1): 47-58. doi: 10.11932/karst20220102
    [17] 何桥, 朱代强, 郑克勋, 朱建耘, 黄勇. 深埋特长隧道岩溶高压涌水灌浆封堵技术研究与实践[J]. 中国岩溶, 2019, 38(4): 488-495. doi: 10.11932/karst20190403

    HE Qiao, ZHU Daiqiang, ZHENG Kexun, ZHU Jianyun, HUANG Yong. Application of grouting sealing technology on karst high-pressure water inrush in a deep-buried extra-long tunnel[J]. Carsologica Sinica, 2019, 38(4): 488-495. doi: 10.11932/karst20190403
    [18] Shichong YUAN, Bangtao SUN, Guilei HAN, Weiqiang DUAN, Zhixiu WANG. Application and Prospect of Curtain Grouting Technology in Mine Water Safety Management in China: A Review[Z]: Water: 1-16.
    [19] 郎君, 刘正武. 基于探测技术的底板构造区注浆加固效果评价[J]. 中国测试, 2022, 48(7): 163-168.

    LANG Jun, LIU Zhengwu. Evaluation of the grouting reinforcement effect in the bottom plate structure area based on the detection technology[J]. China Measurement & Test, 2022, 48(7): 163-168.
    [20] 赵文, 邵红旗. 深部采空区注浆效果即时检测方法[J]. 煤炭学报, 2021, 46(S2): 621-628.

    ZHAO Wen, SHAO Hongqi. Instant detection method of grouting effect in deep mine goaf[J]. Journal of China Coal Society, 2021, 46(S2): 621-628.
    [21] 闫福根, 邹德兵, 闵征辉, 肖伟. 基于模糊综合评价的岩溶帷幕灌浆效果分析[J]. 人民长江, 2023, 54(5): 182-188.

    YAN Fugen, ZOU Debing, MIN Zhenghui, XIAO Wei. Effect analysis of karst curtain grouting based on fuzzy comprehensive evaluation method[J]. Yangtze River, 2023, 54(5): 182-188.
    [22] 孔雅茜. 南方某石灰石矿矿坑涌水治理效果评价[J]. 中国矿业, 2024, 33(S1): 392-396,408. doi: 10.12075/j.issn.1004-4051.20240731

    KONG Yaxi. Evaluation of water inrush control effect of a limestone mine in South China[J]. China Mining Magazine, 2024, 33(S1): 392-396,408. doi: 10.12075/j.issn.1004-4051.20240731
    [23] 曾荣福, 郑克勋, 王钦权. 岩溶水库渗透破坏型渗漏勘察与评价[J]. 中国岩溶, 2023, 42(1): 119-127. doi: 10.11932/karst2021y29

    ZENG Rongfu, ZHENG Kexun, WANG Qinquan. Investigation and evaluation of the leakage caused by seepage failure in karst reservoir[J]. Carsologica Sinica, 2023, 42(1): 119-127. doi: 10.11932/karst2021y29
    [24] 易世友, 焦恒, 周长松, 高峰, 陈涛. 基于“三源模式”的岩溶地下河区污染场地修复治理: 以遵义坪桥地下河系统为例[J]. 中国岩溶, 2023, 42(4): 648-661.

    YI Shiyou, JIAO Heng, ZHOU Changsong, GAO Feng, CHEN Tao. Remediation of polluted sites in the typical area of karst underground river based on "Three-Source Model" : A case study in the Pingqiao underground river system, Zunyi, China[J]. Carsologica Sinica, 2023, 42(4): 648-661.
    [25] 刘琴, 刘文芳. 我国地下水污染治理技术研究综述[J]. 中国矿业, 2016, 25(S2): 158-162. doi: 10.3969/j.issn.1004-4051.2016.z2.041

    LIU Qin, LIU Wenfang. Review on the groundwater pollution treatment technology in China[J]. China Mining Magazine, 2016, 25(S2): 158-162. doi: 10.3969/j.issn.1004-4051.2016.z2.041
    [26] 许增光, 熊伟, 柴军瑞, 线美婷, 王彦召. 隧道裂隙突涌水过程中注浆技术研究进展及展望[J]. 水资源与水工程学报, 2021, 32(2): 185-193,201. doi: 10.11705/j.issn.1672-643X.2021.02.27

    XU Zengguang, XIONG Wei, CHAI Junrui, XIAN Meiting, WANG Yanzhao. Research progress and prospect of grouting techniques in tunnel fissure water inrush process[J]. Journal of Water Resources and Water Engineering, 2021, 32(2): 185-193,201. doi: 10.11705/j.issn.1672-643X.2021.02.27
    [27] 崔萌, 杨虹, 卢志坤, 吴薇, 娄雅琢. 垃圾处理场所地下水污染监测方法研究: 以北天堂简易垃圾填埋场为例[J]. 四川环境, 2022, 41(4): 225-231.

    CUI Meng, YANG Hong, LU Zhikun, WU Wei, LOU Yazhuo. Study on monitoring method of groundwater pollution in garbage disposal sites: Take the North Paradise simple landfill for example[J]. Sichuan Environment, 2022, 41(4): 225-231.
    [28] 王泽群, 章林. 复杂富水环境下帷幕注浆工程布设及工艺优化[J]. 金属矿山, 2014(9): 26-29.

    WANG Zequn, ZHANG Lin. Curtain grouting layout and process optimization under complex water-rich environment[J]. Metal Mine, 2014(9): 26-29.
    [29] 黄刚, 余国锋, 韩云春, 罗勇, 任波, 赵靖, 徐一帆, 高银贵, 贺世芳. 采煤工作面导水通道电法智能监测技术应用研究[J]. 煤炭工程, 2024, 56(2): 92-98.

    HUANG Gang, YU Guofeng, HAN Yunchun, LUO Yong, REN Bo, ZHAO Jing, XU Yifan, GAO Yingui, HE Shifang. Application of electrical intelligent monitoring technology for water-conducting channel in coal face[J]. Coal Engineering, 2024, 56(2): 92-98.
    [30] 周宝生. 基于PRB的东武水源地污染治理效果研究[D]. 泰安: 山东农业大学, 2022

    ZHOU Baosheng. Research on the effect of Dongwu water source pollution treatment based on PRB[D]. Taian: Shandong Agricultural University, 2022.
    [31] 李睿. 尖山磷矿帷幕注浆过程参数控制优化及注浆效果评价[D]. 昆明理工大学, 2023

    LI Rui. Process parameters control optimization and grouting effect evaluation of curtain grouting in Jianshan phosphate mine[D]. Kunming: University of Science and Technology, 2023.
    [32] Robert Duda, Stanisław Mżyk, Jan Farbisz, Grzegorz Bania. Investigating the Pollution range in groundwater in the vicinity of a tailings disposal site with vertical electrical soundings[J]. Polish Journal of Environmental Studies, 2019, 29: 101-110. doi: 10.15244/pjoes/100478
    [33] 王程, 李博凡, 吴璋, 鲁晶津. 孔间电阻率监测在注浆效果检测的应用研究[J]. 工矿自动化, 2023, 49(10): 127-132,159.

    WANG Cheng, LI Bofan, WU Zhang, LU Jingjin. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation, 2023, 49(10): 127-132,159.
    [34] 田浪. 岩溶山区闭坑和生产矿山三维地质建模及其在地下水污染防治应用研究[D]. 贵阳: 贵州大学, 2023

    TIAN Lang. Study on 3D geological modeling of closed pit and production mine in Karst Mountain area and its application in groundwater pollution prevention and control[D]. Guiyang: Guizhou University, 2023.
    [35] 马蓝建, 陈世万, 田浪, 余会云, 吴攀. 岩溶区矿山地下水通道精细探查与地质模型构建[J]. 水利水电技术(中英文), 2025, 56(1): 1-15.

    MA Lanjian, CHEN Shiwan, TIAN Lang, YU Huiyun, WU Pan. The study on the groundwater pathway exploration and the geological model construction of the mine in karst area[J]. Water Resources and Hydropower Engineering, 2025, 56(1): 1-15.
    [36] 张志松. 阿尔奇公式的理论本原[J]. 地球物理学进展, 2020, 35(4): 1514-1522. doi: 10.6038/pg2020DD0408

    ZHANG Zhisong. Theoretical roots of Archie formulas[J]. Progress in Geophysics, 2020, 35(4): 1514-1522. doi: 10.6038/pg2020DD0408
    [37] 杨克兵, 王竞飞, 马凤芹, 唐海洋, 潘雪峰. 阿尔奇公式的适用条件分析及对策[J]. 天然气与石油, 2018, 36(2): 58-63. doi: 10.3969/j.issn.1006-5539.2018.02.010

    YANG Kebing, WANG Jinfei, MA Fengqin, TANG Haiyang, PAN Xuefeng. Analysis and countermeasures about applicable conditions of Archie's Formula[J]. Natural Gas and Oil, 2018, 36(2): 58-63. doi: 10.3969/j.issn.1006-5539.2018.02.010
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  50
  • HTML浏览量:  21
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-01
  • 录用日期:  2025-03-19
  • 修回日期:  2025-03-14
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回