Morphological characteristics and geological significance of karst landforms developed in red-bed strata of the western Sichuan foreland basin
-
摘要: 红层岩溶在川西前陆盆地的山地中广泛发育,查明红层岩溶的形成及演化模式,对认识红层岩溶发育具有重要意义。基于引大济岷工程野外调查数据,通过数理统计和数字地形分析的方法,量化了红层岩溶形态的参数特征,总结其空间发育规律,最后对红层岩溶演化模式进行了探讨。结果表明:岩溶泉主要分布在797~852 m、962~1 017 m和1 037~1 292 m,岩溶洼地主要分布在775~875 m、1 075~1 175 m和1 575~1 675 m,红层岩溶的发育具有高程聚集效应;洼地长轴、短轴、周长和面积均呈显著的左偏分布特征,表明在红层中发育的洼地比在碳酸盐岩中发育的规模更小,形态也更简单;K函数、核密度和面积高程积分的空间分布规律指示了红层岩溶发育严格受构造和岩性控制,研究区地貌整体处于中年阶段,受构造抬升影响,构造裂隙发育和岩体可溶性强的区域正处于地貌回春过程中。相关成果揭示了红层岩溶与碳酸盐岩岩溶在形成演化模式上有显著差异,丰富了红层岩溶研究的理论知识体系,为该地区引调水工程中可能遭遇的岩溶灾害分析提供了理论支撑。Abstract:
As a uniquely developed karst type in terrestrial clastic rocks, red-bed karst is widely distributed across the mountainous terrain of the western Sichuan foreland basin. Its development rules and evolution model differ significantly from those of traditional carbonate karst systems. Although academic research on traditional carbonate karst has reached a relatively advanced stage, systematic investigations into the spatial distribution characteristics, genetic mechanisms, and evolution models of red-bed karst still require in-depth exploration. In recent years, transportation tunnels and water resource allocation projects in western Sichuan have frequently encountered geological hazards such as water inrush and collapses caused by red-bed karst. These engineering-induced changes in water environment have become increasingly severe. Therefore, systematically revealing the spatial distribution patterns of red-bed karst and exploring its formation mechanisms are not only critical for deepening the scientific understanding of red-bed karst development, but also of great significance for ensuring the safety and sustainability of major engineering projects in mountainous areas of western Sichuan. This study is supported by the National and Sichuan Provincial Water Network Key Project—the Dadu–Minjiang Water Diversion Project. Based on red-bed karst morphology data collected during the engineering investigation phase in the Lianhua Mountain area (southern segment of the Longmenshan Fault Zone and western margin of the western Sichuan foreland basin), this study applied comprehensive mathematical statistics and digital terrain analysis methods. By quantifying the parameter characteristics of red-bed karst landforms, it clarified their spatial distribution patterns (including planar distribution and vertical zoning) and examined the driving factors behind the spatial differentiation of red-bed karst landforms, as well as the impact of neotectonic movements on the evolutionary stages of red-bed karst geomorphology. The results show: (1) Vertical distribution of red-bed karst landforms exhibits a significant elevation aggregation effect. Karst springs are primarily concentrated in the elevation ranges of 797 m to 852 m, 962 m to1,017 m, and 1,037 m to 1,292 m, while karst depressions are predominantly distributed at 775 m to 875 m, 1,075 m to 1,175 m, and 1,575 m to 1,675 m. Results from K-function and kernel density analyses indicate that the spatial distribution of red-bed karst landforms is significantly scale-dependent, with rock mass solubility and fracture density serving as the main controlling factors. Further analysis shows that red-bed karst depressions tend to aggregate in areas with high concentrations of soluble components in clastic rocks and well-developed groundwater runoff paths. Karst springs in red-bed strata are generally characterized by rapid recharge, short flow paths, low discharge, and a scattered distribution from multiple points. However, in regions with intense tectonic activities, large karst springs with concentrated discharge can still be developed, though their scale is significantly smaller than that of springs in carbonate karst areas under similar tectonic conditions. (2) As a typical karst feature in red beds, depressions show smaller morphological parameters (e.g., major axis, minor axis, perimeter, and area) compared to those developed in carbonate rocks, with a significantly negatively skewed distribution, indicating smaller scales in red-bed strata. The eccentricity (E) predominantly ranges from 0.75 to 1, and the compactness coefficient is mainly concentrated in the interval of 1 to 1.6, suggesting simpler edge morphology of red-bed karst depressions. (3) The spatial distribution pattern of Hypsometric Integral (HI) values further reveals that red-bed karst development is strictly controlled by tectonics and lithology, indicating that the overall geomorphic evolution of the study area has reached the mature stage. In the area where calcareous conglomerate is distributed, the drainage basin landforms exhibit significantly higher HI values than the regional average due to the highest solubility of the rock mass. This results in geomorphic evolution predominantly in the youthful stage, corresponding to active karst development. However, the low degree of actual evolution of karst landforms in these basins highlights a tectonically induced geomorphic rejuvenation process. The core of the Gaojiachang Anticline and the limbs of the Nanbaoshan Syncline, characterized by intensive structural fracture development, actively respond to tectonic uplift and are currently undergoing geomorphic rejuvenation. These results reveal significant differences in spatial distribution patterns and formation-evolution models between red-bed karst and carbonate karst. This study examines the spatial differentiation characteristics of red-bed karst and its primary developmental drivers, thereby enriching the theoretical framework of red-bed karst research. The findings provide a theoretical basis for analyzing potential red-bed karst hazards in transportation and water diversion projects in this region. -
表 1 红层岩溶形态的量化参数及意义
Table 1. Quantitative parameters and significance of red-bed karst morphology
指标类型 指标名称 量化方式 形态参数的意义 高程分布参数 泉点、溶洞高程 中绘i80 GNSS接收机测定 泉点、溶洞出露点的海拔高程 洼地高程 ArcGIS平台Extract Multi Values To Points工具 洼地最低点海拔高程 全局莫兰指数(IG) ArcGIS平台Spatial Autocorrelation工具 度量地理对象的空间自相关程度和聚散特征。IG∈(0,1],空间聚集形态;IG=0,随机分布;IG∈[−1,0),空间离散形态;绝对值越大,自相关性越显著 洼地形态参数 洼地长轴、短轴 ArcGIS平台Minimum Bounding Geometry工具 长轴(L):洼地外接最小矩形的长边
短轴(W):洼地外接最小矩形的短边洼地展布方向 ArcGIS平台Calculate Polygon Main Angle工具 洼地长轴的走向,反映洼地发育趋势方向 偏心率(E) 公式$ \boldsymbol{E}=\sqrt{1-\dfrac{{(\boldsymbol{W}/2)}^{2}}{{(\boldsymbol{L}/2)}^{2}}} $计算 反映洼地多边形的标准程度。E=0,洼地外接多边形为正多边形,E∈(0,1),数值越大,外接多边形越狭长[32] 面积(A) ArcGIS平台直接计算 洼地最大封闭等高线的投影面积和长度 周长(S) 紧度系数(T) 由公式$ \boldsymbol{T}=\dfrac{0.028\;2\boldsymbol{S}}{\sqrt{\boldsymbol{A}}} $计算 洼地实际周长与相同面积标准圆周长之比。T∈(1,∞],T值越大,洼地外接多边形边缘越复杂[40] 红层岩溶形态
空间分布指标Ripley's K函数 ArcGIS平台Multi-Distance Spatial Cluster Analysis
工具反映红层岩溶形态分布状态。K观测值>HiConfEnvz值(Monte Carlo空间模式检验上限),具备显著统计性,反之为不具备[33] 核密度 ArcGIS平台Kernel Density工具 点状数据空间分布状态,以描述红层岩溶形态的空间分布特征 面积高程积分值(HI) ArcGIS平台实现 以二维曲线或数值反映地表物质相对侵蚀量,可用以量化流域发育阶段,$ {{\rm{HI}}}=\dfrac{({流}{域}{平}{均}{高}{程}-{流}{域}{最}{小}{高}{程})}{({流}{域}{最}{大}{高}{程}-{流}{域}{最}{小}{高}{程})} $。 -
[1] 袁道先主编. 岩溶学词典[M]. 北京: 地质出版社, 1988.YUAN Daoxian. Glossary of karstology[M]. Beijing: GeologyPublishingHouse, 1988. [2] 姜伏伟, 董颖, 苏孝良, 陈友智, 于宁, 曹晓娟. 试论红色岩溶概念及其科学价值[J]. 中国岩溶, 2020, 39(5): 775-780. doi: 10.11932/karst20200513JIANG Fuwei, DONG Ying, SU Xiaoliang, CHEN Zhiyou, YU Ning, CAO Xiaojuan. Preliminary dicussion on the concept of red karst and its scientific value[J]. Carsologica Sinica, 2020, 39(5): 775-780. doi: 10.11932/karst20200513 [3] 袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016.YUAN Daoxian, JIANG Yongjun, SHEN Licheng, et al. Modern Karst Science[M]. Beijing: Science Press, 2016. [4] 袁道先, 朱德浩, 翁金桃, 等. 中国岩溶学[M]. 北京: 地质出版社, 1994.YUAN Daoxian, ZHU Dehao, WENG Jintao, et al. Karst in China[M]. Beijing: Geological Publishing House, 1994. [5] 漆继红, 许模, 钱玲, 马莹. 观音岩地区钙质砂(砾)岩溶蚀试验模拟研究[J]. 水土保持研究, 2007, 14(3): 64-66.Qi Jihong, Xu Mo, Qian Ling, Ma Ying. Experimental simulation of dissolution for cal-gritstone and cal-conglomerate from Guanyingyan[J]. Research of Soil and Water Conservation, 2007, 14(3): 64-66. [6] 韩浩东, 王春山, 王东辉, 等. 成都市白垩系灌口组富膏盐红层溶蚀特征与机理[J]. 中国岩溶, 2021, 40(5): 768-782.HAN Hao-dong, WANG Chun-shan, WANG Dong-hui, et al. Dissolution characteristics and mechanism on red bed enriched gypsum salt of Guankou formation, Cretaceous, Chengdu[J]. Carsologica Sinica, 2021, 40(5): 768-782. [7] 刘功余. 桂南红层岩溶及其发育控制因素探讨[J]. 中国岩溶, 2011, 30(2): 145-155. doi: 10.3969/j.issn.1001-4810.2011.02.005LIU Gongyu. Karst features and the controlling factors of redbeds in South Guangxi[J]. Carsologica Sinica, 2011, 30(2): 145-155. doi: 10.3969/j.issn.1001-4810.2011.02.005 [8] ZHU Weibin, ZHU Siren, ZHANG Hua, HUANG Hui . On the genesis of karst in red beds and underground engineer risks analysis[J]. IOP Conference Series Earth and Environmental Science, 2020, 570: 052030. [9] 刘尚仁. 广东的红层岩溶及其机制[J]. 中国岩溶, 1994,13(4): 395-403.Liu Shangren. Red beds karst of Guangdong and its mechanism. Carsologica Sinica, 1994, 13(4): 395-403. [10] 刘尚仁, 黄瑞红. 广东红层岩溶地貌与丹霞地貌[J]. 中国岩溶, 1991,10(3): 16-22.Liu Shangren, Huang Ruihong. Red bed karst landform and the Danxia landform in Guangdong Province. Carsologica Sinica, 1991, 10(3): 183-189. [11] 贾龙, 吴远斌, 潘宗源, 殷仁朝, 蒙彦, 管振德. 我国红层岩溶与红层岩溶塌陷刍议[J]. 中国岩溶, 2016, 35(1): 67-73.JIA Long, WU Yuanbin, PAN Zongyuan, YIN Renchao, MENG Yan, GUAN Zhende. Areview of the research on karst and sinkhole of red beds in China[J]. Carsologica Sinica, 2016, 35(1): 67-73. [12] 吴应科, 梁永平. 长江中上游红层岩溶刍议[J]. 中国岩溶, 1987,6(2): 22-30.WU Ying-ke, LIANG Yong-ping. Preliminary opinion on the red bed karst in the upper-middle reaches of Yangtze River[J]. Carsologic Sinica, 1987,6(2): 22-30. [13] 王子忠. 四川盆地红层岩体主要水利水电工程地质问题系统研究[D]. 成都: 成都理工大学, 2013.WANG Zi-zhong. Systematic Researches on Red Bed Rock Mass Engineering Geological problems of Water Resources and Hydropower Projects in Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology, 2011. [14] 竺维彬, 张华, 黄辉. 红层岩溶发育区地下工程风险分析及防治对策[J]. 现代隧道技术, 2021, 58(5): 179-186, 212.ZHU Weibin, ZHANG Hua, HUANG Hui. Analysis of and Prevention Countermeasures for Underground EngineeringRisks in Red Bed Areas with Developed Karst[J]. Modern Tunnelling Technology, 2021, 58(5): 179-186, 212. [15] 冯启言, 韩宝平. 鲁西南地区的红层岩溶及其水文地质意义[J]. 中国矿业大学学报, 1998(1): 53-57.FENG Qi-yan, HAN Bao-ping. Red Bed Karst and its hydrogeological significance ih Southwestern Shandong[J]. Journal of China University of Mining & Technology, 1998(1): 53-57. [16] 刘伟, 甘伏平, 张伟, 贾龙. 红层区岩溶塌陷调查地球物理勘探技术应用研究[J]. 地球物理学进展, 2015, 30(6): 2923-2930.LIU Wei, GAN Fu-ping, ZHANG Wei, JIA Long. Application of geophysical prospecting to Karst collapse in red bed area[J]. Progress in Geophysics, 2015,30(6) : 2923-2930. [17] 黄胜东, 赵龙, 黄贵任, 陈积普, 王宇. 滇中红层膏盐溶蚀特征及其对水质的影响: 以楚雄谢家河河谷为例[J]. 中国岩溶, 2022, 41(4): 610-622.HUANG Shengdong, ZHAO Long, HUANG Guiren, CHEN Jipu, WANG Yu. Dissolution characteristics of gypsum salt in the red beds of central Yunnan Province and their effects on groundwater quality: A case study of Xiejiahe valley in Chuxiong City[J]. Carsologic Sinica, 2022, 41(4): 610-622. [18] 郭成刚, 郭永发, 朱孟龙, 张庆文. 红层环境下的碳酸盐岩岩溶隧道暗河水文地质调查研究[J]. 现代隧道技术, 2020, 57(1): 58-64.GUO Chenggang, GUO Yongfa, ZHU Menglong, ZHANG Qingwen. Hydrogeological Investigation of the Underground River of Karst Tunnel in Carbonate , Rock of Red Bed [J]. Modern Tunnelling Technology, 2020, 57 (1) : 58-64. [19] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113-120.LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red bed karst and its hydrochemical characteristics of groundwater in the downstream of Qingjiang river, China[J]. Journal of Guangxi Normal University (Natural Science Edition), 2018, 36(3): 113-120. [20] ZHU Cheng, WU Li, ZHU Tongxin, HOU Rongfeng, HU Zhinong, TAN Yan, SUN Wei, JIA Tianjiao, PENG Hua.Experimental studies on the Danxia landscape morphogenesis in Mt. Danxiashan, South China[J]. Journal of Geographical Sciences, 2015,25(8):943-966. [21] Sharples C , Eberhard R . Appropriate terminology for karst-like phenomena: The problem with 'pseudokarst'[J]. International Journal of Speleology, 2013, 42(2): 109-113. [22] Jan Lenart , Jan Miklín. Pseudokarst caves of the Outer Western Carpathians map[J]. 2017,13(2):37-46. [23] Mörner, Nils-Axel, Sjöberg Rabbe. Merging the concepts of pseudokarst and paleoseismicity in Sweden: A unified theory on the formation of fractures, fracture caves, and angular block heaps[J]. International Journal of Speleology, 2018,47(3):393-405. [24] Nathan J Wood, Daniel H Doctor, Jay Alderm, Jeanne Jones. Current and future sinkhole susceptibility in karst and pseudokarst areas of the conterminous United States[J]. Frontiers in Earth Science, 2023, 11. [25] Walker L N, Mylroie J E, Walker A D, Mylroie J R. Symmetrical Cone-Shaped Hills, Abaco Island, Bahamas: Karst Or Pseudokarst?[J]. Journal of caves and karst studies, 2010, 72(3): 137-149. [26] 张强, 曾开帅, 张宇, 何文君, 邵江, 彭琪. 红层地区飞仙关隧道特大涌水模型试验[J]. 南水北调与水利科技, 2019, 17(5): 166-171.ZHANG Qing, ZENG Kaishuai, ZANG Yu, HE Wenjun, SHAO Jiang, PENG Qi. Model simulation test for large-scale water inflow in Feixianguan Tunnel in Red Bed Area[J]. South-to-North Water Transfers and Water Science& Technology, 2019, 17(5): 166-171. [27] 罗志立, 龙学明. 龙门山造山带崛起和川西陆前盆地沉降[J]. 四川地质学报, 1992(1): 1-17.LUO Zhili, LONG Xueming. The uplifting of the Longmenshan orogenic zone and the subsidence of the west Sichuan foreland basin. Acta Geologica Sichuan, 1992, 12 ( 1 ) : 1 - 17 [28] 梅冥相. 中上扬子印支运动的地层学效应及晚三叠世沉积盆地格局[J]. 地学前缘, 2010, 17(4): 99-111.Mei Ming-xiang. Stratigraphic forcing of the Indo-China movement and its related evolution of sedimentary-basin pattern of the late Triassic in middle-upper Yangtze region, south China. Earth Science Frontiers, 2010, 17(4): 99-111. [29] 中国科学院地质研究所岩溶研究组著. 中国岩溶研究[M]. 北京: 科学出版社, 1979.Research Group of Karsts, Institute of Geology, CAS. Research of China Karsts[M]. Beijing: Science Press, 1979. [30] 李晓民, 燕云鹏, 刘刚, 李冬玲, 张兴, 庄永成. ZY-102C星数据在西藏札达地区水文地质调查中的应用[J]. 国土资源遥感, 2016, 28(4): 141-148.LI Xiaoming, YAN Yunpeng, LIU Gang, LI Dongling, ZHANG Xing, ZHUANG Yongcheng. Ap- plication of ZY-102 C satellite data to hydrogeological investiga- tion in Zanda area, Tibet.[J]. Remote Sensing for Land and Resources, 2016, 28(4): 141-148. [31] 钟玲敏. 川东高陡背斜区岩溶空间分异特征及评价系统构建研究[D]. 成都: 成都理工大学, 2018.ZHONG Lingmin. Research on the karst development characteristics of high-steep anticline in eastern Sichuan and evaluation system construction[D]. Chengdu: Chengdu University of Technology, 2018. [32] 杨先武. 基于DEM的喀斯特峰林峰丛地形特征与空间分异研究[D]. 南京: 南京师范大学, 2019.YANG Xianwu. DEM Based Research on the Topographic Characeristics and Spatial Variationof Fenglin and Feng cong Karst landforms[D]. Nanjing: Nanjing Normal University, 2019. [33] Ripley B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(2): 172-212. doi: 10.1111/j.2517-6161.1977.tb01615.x [34] Arthur N Strahler. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 1952, 63(11): 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 [35] 彭建, 杨明德, 梁虹. 基于GIS的路南巴江喀斯特流域地貌演化定量研究[J]. 中国岩溶, 2002, 21(2): 19-24.PENG Jian, YANG Mingde, LIANG Hong. A quantitative study on Bajiang karst drainage basin in Lunan county, Yunnan province based on GIS. Carsologica Sinica, 2002, 21(2): 19-24. [36] Julie Jeanpert, Pierre Genthon, Pierre Maurizot, Jean-Luc Folio, Myriam Vendé-Leclerc, Jeremy Sérino, Jean-Lambert Join, Marion Iseppi. Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: the case of southern Grande Terre in New Caledonia (SW Pacific)[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1854-1868. [37] 信忠保, 许炯心, 马元旭. 黄土高原面积-高程分析及其侵蚀地貌学意义[J]. 山地学报, 2008(3): 356-363.XIN Zhongbao, XU Jiongxin, MA Yuanxu. Hypsometric integral analysis and its sediment yield implications in Loess Plateau, China. Journal of Mountain Science, 2008, 26(3): 356-363. [38] 丁智强, 王平, 李玉辉. 基于面积-高程积分值的喀斯特地貌演化动力机制研究[J]. 第四纪研究, 2021, 41(6): 1546-1557.DING Zhiqiang, WANG Ping, LI Yuhui. Dynamic mechanism of karst geomorphology evolution based on Hypsometric Index[J]. Quaternary Sciences, 2021, 41(6): 1546-1557. [39] 常直杨, 王建, 白世彪, 张志刚. 面积高程积分值计算方法的比较[J]. 干旱区资源与环境, 2015, 29(3): 171-175.CHANG Zhiyang, WANG Jian, BAI Shibiao, ZHANG Zhigang. Comparison of hypsometric integral methods[J]. Journal of Arid Land Resources and Environment, 2015, 29(3): 171-175. [40] 孟欣. 基于DEM的峰丛区岩溶洼地提取与形态特征分析[D]. 南京: 南京师范大学, 2019.MENG Xin. Extraction and Morphological Characteristics Analysis of Karst Depressions in Feng cong AreaBased on DEMs[D]. Nanjing: Nanjing Normal Universit , 2019. [41] 常直杨, 王建, 白世彪, 张志刚. 空间自相关分析在面积高程积分中的应用[J]. 山地学报, 2014, 32(1): 1-10.CHANG Zhiyang, WANG Jian, BAI Shibiao, ZHANG Zhigang. The technique of spatial autocorrelation for the hypsometric integral. Journal of Mountain Science, 2014, 32(1): 1-10. [42] 秦川, 李敬波, 郑立龙, 白赟. 云南莲峰、昭通—鲁甸断裂带面积—高程积分的构造地貌研究[J] . 地质论评, 2023, 69(5): 1649-1660.QIN Chuan, LI Jingbo, ZHENG Llong, BAI YUN. Study on tectonic geomorphology of area-elevation integral in Lianfeng and Zhaotong-Ludian fault zone[J].EOLOGICAL REVIEW, 2023, 69(5): 1649-1660. [43] Karna Lidmar-Bergström, Johan M. Bonow, Peter Japsen. Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence[J]. Global & Planetary Change, 2013, 100(JAN): 153-171. [44] 许模, 王迪, 漆继红, 杨艳娜. 基于分形理论的喀斯特地貌形态分析[J]. 成都理工大学学报(自然科学版), 2011, 38(3): 328-333.XU Mu, WANG Di, Qi Jihong, YANG Yanna. Study on morphological characteristics of karst landform based on the fractal theory[J]. Journal of Chengdu University of Technology ( Science & Technology Edition, 2011,38(3): 328-333. [45] 余磊, 杨艳娜, 许模, 贺苏和巴特尔, 曾宪明, 刘洋. 川东明月峡背斜区岩溶形态分异与构造裂隙表征参数的关系[J]. 成都理工大学学报(自然科学版), 2023, 50(1): 92-100.YU Lei, YANG Yanna, XU Mo, HE Suhebateer, ZENG Xianming, LIU Yang. Relationship between karst morphology differentiation and structural fracture characterization parameters in Mingyuexia anticline area, eastern Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science& Technology Edition), 2023, 50(1): 92-100. [46] François Guillocheau, Brendan Simon, Guillaume Baby, Paul Bessin, Cécile Robin, Olivier Dauteuil. Planation surfaces as a record of mantle dynamics: The case example of Africa[J]. Gondwana Research, 2017: S1342937X17302496. [47] Julien Morin, Marc Jolivet, Laurie Barrier, Amandine Laborde, Haibing Li, Olivier Dauteuil. Planation surfaces of the Tian Shan Range (Central Asia): Insight on several 100 million years of topographic evolution[J]. Journal of Asian Earth Sciences, 2019, 177(JUN. 15): 52-65. -