• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宣威市地质灾害综合解译标志建立及应用效果评价

杨迎冬 杨中宝 魏蕾 赵鹏 罗泽阳

杨迎冬,杨中宝,魏 蕾,等. 宣威市地质灾害综合解译标志建立及应用效果评价[J]. 中国岩溶,2025,44(4):815-827 doi: 10.11932/karst20250411
引用本文: 杨迎冬,杨中宝,魏 蕾,等. 宣威市地质灾害综合解译标志建立及应用效果评价[J]. 中国岩溶,2025,44(4):815-827 doi: 10.11932/karst20250411
YANG Yingdong, YANG Zhongbao, WEI Lei, ZHAO Peng, LUO Zeyang. Establishment of comprehensive remote sensing interpretation markers for geological hazards in Xuanwei City and evaluation of their application effectiveness[J]. CARSOLOGICA SINICA, 2025, 44(4): 815-827. doi: 10.11932/karst20250411
Citation: YANG Yingdong, YANG Zhongbao, WEI Lei, ZHAO Peng, LUO Zeyang. Establishment of comprehensive remote sensing interpretation markers for geological hazards in Xuanwei City and evaluation of their application effectiveness[J]. CARSOLOGICA SINICA, 2025, 44(4): 815-827. doi: 10.11932/karst20250411

宣威市地质灾害综合解译标志建立及应用效果评价

doi: 10.11932/karst20250411
基金项目: 国家自然科学基金(42471131);云南省地质灾害精细化调查与风险评价综合遥感(云财资环〔2021〕164号);云南省地质灾害隐患识别(云财资环〔2021〕23号);云南省地质灾害气象风险预警业务能力建设( 云财资环〔2022〕4号)
详细信息
    作者简介:

    杨迎冬(1978—),男,正高级工程师,硕士,主要从事地质灾害综合防治体系建设、隐患识别及综合遥感、地质灾害气象风险预警、地质环境信息化建设等工作。E-mail:yyd304@126.com

    通讯作者:

    魏蕾(1991-),女,工程师,在读博士研究生,主要从事地质灾害综合研究、地质灾害遥感及气象风险预警等工作。E-mail:454580434@qq.com

  • 中图分类号: X43;P694;P627

Establishment of comprehensive remote sensing interpretation markers for geological hazards in Xuanwei City and evaluation of their application effectiveness

  • 摘要: 为解决单一解译标志在识别中存在的不足,提升解译效果,尽可能发现潜在的地质灾害隐患点,文章在常规的InSAR形变、光学影像基础上,充分考虑地质灾害发育条件和承灾对象,引入易发环境标志和人类活动标志,形成综合解译标志,并在云南省宣威市开展地质灾害解译应用工作。此次共解译88处地质灾害点,根据野外实地验证,35处为已有地质灾害隐患点,33处为新增潜在地质灾害点(其中19处对居民有威胁);为评价解译标志的有效性,建立熵权—模糊评价方法对解译标志进行质量评估,结果表明:在宣威建立的综合解译标志质量良好,对潜在地质灾害隐患识别效果较好,潜在地质灾害识别准确率达62.3%。

     

  • 图  1  宣威市地形坡度图

    Figure  1.  Slope gradients of Xuanwei City

    图  2  宣威市地质灾害易发性分区图(引自“云南省宣威市地质灾害风险普查报告”)

    Figure  2.  Zoning map of geological hazard susceptibility in Xuanwei City (quoted from "Geological Hazard Risk Survey Report for Xuanwei City, Yunnan Province")

    图  3  人类活动光学遥感影像特征

    Figure  3.  Features of optical remote sensing images of human activities

    图  4  腊嘎大沟泥石流解译标志

    Figure  4.  Interpretation markers of gully debris flow in Laga

    图  5  腊嘎大沟泥石流野外核查

    Figure  5.  Field verification of gully debris flow in Laga

    图  6  新增隐患点分布图

    Figure  6.  Distribution of new potential geological hazards

    表  1  泥石流沟床比降反算结果表

    Table  1.   Inverse calculation results of bed slopes of debris flow gullies

    流量 /m·s−1 过流面积/m2 流速/m·s−1 沟床比降/‰
    泥深1 m 泥深2 m 泥深3 m 泥深4 m 泥深5 m
    30 5 6.00 726.02 288.12 167.80 114.34 84.92
    30 10 3.00 45.38 18.01 10.49 7.15 5.31
    40 5 8.00 2294.60 910.61 530.33 361.38 268.38
    40 10 4.00 143.41 56.91 33.15 22.59 16.77
    50 5 10.00 5602.04 2223.17 1294.75 882.27 655.22
    50 10 5.00 350.13 138.95 80.92 55.14 40.95
    100 20 5.00 350.13 138.95 80.92 55.14 40.95
    100 30 3.33 69.16 27.45 15.98 10.89 8.09
    100 40 2.50 21.88 8.68 5.06 3.45 2.56
    下载: 导出CSV

    表  2  泥石流水源区汇水面积估算

    Table  2.   Estimation of the catchment area of debris flow

    假设清水洪峰
    流量/m3·s−1
    径流
    系数
    1 h最大降雨
    量/mm·h−1
    汇水面积/
    km2
    20.8500.179856
    40.8500.359712
    60.8500.539568
    100.8500.899281
    下载: 导出CSV

    表  3  泥石流流量反算表

    Table  3.   Inverse calculation results of debris flow capacity

    KI/mmF/km2QP/m3·s−1DC$ {\phi _C} $QC/m3·s−1
    0.8500.182.001.10.51112.00
    0.8500.364.001.10.51112.96
    0.8500.546.001.10.3333.43
    0.8500.89910.001.10.3333.71
    下载: 导出CSV

    表  4  综合评判矩阵

    Table  4.   Matrix R of comprehensive evaluation

    指标概率得分 正确 基本正确 不正确
    易发环境标志 0.70 0.10 0.20
    卫星影像标志 0.65 0.25 0.10
    InSAR形变标志 0.50 0.20 0.30
    人类活动标志 0.80 0.10 0.10
    下载: 导出CSV

    表  5  解译标志熵权计算结果

    Table  5.   Entropy weight results W of interpretation markers

    易发环境标志卫星影像标志InSAR形变标志人类活动标志合计
    0.400.360.190.051.00
    下载: 导出CSV

    表  6  综合遥感调查野外验证统计表

    Table  6.   Field verification results of comprehensive remote sensing survey

    地质灾害类型 综合遥感解译数(处) 野外核查正确数(处) 野外核查基本正确数(处) 准确率
    滑坡 35 24 2 74.3%
    泥石流 26 21 2 88.5%
    崩塌 4 3 75.0%
    地面塌陷 23 13 3 69.6%
    下载: 导出CSV
  • [1] 葛大庆, 戴可人, 郭兆成, 李振洪. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7): 949-956.

    GE Daqing, DAI Keren, GUO Zhaocheng, LI Zhenhong. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956.
    [2] 陈立权, 赵超英, 任超锋, 王佩杰 , 陈雪蓉, 陈恒祎. 光学遥感用于贵州发耳镇尖山营滑坡监测研究[J]. 中国岩溶, 2020, 39(4): 518-523.

    CHEN Liquan, ZHAO Chaoying, REN Chaofeng, WANG Peijie, CHEN Xuerong, CHEN Hengyi. Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing[J]. Carsologica Sinica, 2020, 39(4): 518-523.
    [3] 王宇, 黄成, 周翠琼, 杨迎冬, 肖华宗, 晏祥省, 张令泽, 王裕琴. 山区地质灾害应急调查的内涵及方法分析评述[J]. 中国岩溶, 2020, 39(4): 492-499.

    WANG Yu, HUANG Cheng, ZHOU Cuiqiong, YANG Yingdong, XIAO Huazong, YAN Xiangsheng, ZHANG Lingze, WANG Yuqin. Review on the connotation and methods of emergency investigations to geological hazards in mountainous area[J]. Carsologica Sinica, 2020, 39(4): 492-499.
    [4] 童立强, 郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感, 2013, 25(1): 86-92.

    TONG Liqiang, GUO Zhaocheng. A study of remote sensing image features of typical and slides[J]. Remote Sensing for Land and Resources, 2013, 25(1): 86-92.
    [5] 童立强, 聂洪峰, 李建存, 郭兆成. 喜马拉雅山地区大型泥石流遥感调查与发育特征研究[J]. 国土资源遥感, 2013, 25(4): 104-112.

    TONG Liqiang, NIE Hongfeng, LI Jiancun, GUO Zhaocheng. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. Remote Sensing for Land and Resources, 2013, 25(4): 104-112.
    [6] 谢猛. 基于多源数据的伊阿铁路工程地质遥感解译及选线[J]. 铁道勘察, 2020, 46(5): 40-46.

    Xie Meng. Remote sensing interpretation of engineering geology and route selection for Yining-Akesu railway based on multisource data[J]. Railway Investigation and Surveying, 2020, 46(5): 40-46.
    [7] 吴明辕, 罗明, 刘岁海. 基于光学遥感与InSAR技术的潜在滑坡与老滑坡综合识别: 以滇西北地区为例[J]. 中国地质灾害与防治学报, 2022, 33(3): 84-93.

    WU Mingyuan, LUO Ming, LIU Suihai. Comprehensive identification of potential and old landslides based on optical remote sensing and InSAR technologies: A case study in northwestern Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 84-93.
    [8] 梁京涛, 马志刚, 赵聪, 杨磊, 张肃. 西南深切河谷区滑坡早期识别及斜坡微地貌动态演化特征研究: 以北川县白什乡老街后山滑坡为例[J]. 灾害学, 2020, 35(2): 122-126,135. doi: 10.3969/j.issn.1000-811X.2020.02.023

    LIANG Jingtao, MA Zhigang, ZHAO Cong, YANG Lei, ZHANG Su. The research of early identification of landslide and dynamic evolution of slope microtopography in deep valley of southwest China: A case study of the landslide in the ancient street of Baishi township, Beichuan county[J]. Journal of Catastrophology, 2020, 35(2): 122-126,135. doi: 10.3969/j.issn.1000-811X.2020.02.023
    [9] 陆会燕, 李为乐, 许强, 董秀军, 代聪, 王栋. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1342-1354.

    LU Huiyan, LI Weile, XU Qiang, DONG Xiujun, DAI Cong, WANG Dong. Early detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha Rriver based on optical remote sensing and InSAR echnologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1342-1354.
    [10] 黄海峰, 薛蓉花, 赵蓓蓓, 易武, 邓永煌, 董志鸿, 柳青, 易庆林, 张国栋. 孕灾机理与综合遥感结合的三峡库首顺层岩质滑坡隐患识别[J]. 测绘学报, 2022, 51(10): 2056-2068. doi: 10.11947/j.AGCS.2022.20220306

    HUANG Haifeng, XUE Ronghuɑ, ZHAO Beibei, YI Wu, DENG Yonghuɑng, DONG Zhihong, LIU Qing, YI Qinglin, ZHANG Guodong. The bedding rock lɑndslide identificɑtion in the heɑd ɑreɑ of the Three Gorges Reservoir combined with disɑster pregnɑnt mechɑnism ɑnd comprehensive remote sensing method[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2056-2068. doi: 10.11947/j.AGCS.2022.20220306
    [11] 王治华. 三峡水库区城镇滑坡分布及发育规律[J]. 中国地质灾害与防治学报, 2007, 18(1): 33-38. doi: 10.3969/j.issn.1003-8035.2007.01.008

    WANG Zhihua. Landslide distribution and development in the towns of the Three Gorges Reservior area[J]. The Chinese Journal of Geological Hazard and Control, 2007, 18(1): 33-38. doi: 10.3969/j.issn.1003-8035.2007.01.008
    [12] 贺凯, 李滨, 赵超英, 高杨, 陈立权, 刘朋飞. 基于易滑地质结构与多源数据差异的岩溶山区大型崩滑灾害识别研究[J]. 中国岩溶, 2020, 39(4): 467-477.

    HE Kai, LI Bin, ZHAO Chaoying, GAO Yang, CHEN Liquan, LIU Pengfei. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas[J]. Carsologica Sinica, 2020, 39(4): 467-477.
    [13] 刘纪尧, 豆猛, 吴少菁. 遥感技术在地貌与岩土体特征识别和地质灾害分布规律分析中的应用[J]. 地质灾害与环境保护, 2017, 28(3): 83-90. doi: 10.3969/j.issn.1006-4362.2017.03.017

    LIU Jirao, DOU Meng, WU Shaojing. Application of remote sensing technology in geomorphology and geotechnical feature recognition and analysis of geological hazards distribution[J]. Journal of Geological Hazards and Environment, 2017, 28(3): 83-90. doi: 10.3969/j.issn.1006-4362.2017.03.017
    [14] 李铁锋, 徐岳仁, 潘懋, 丛威青, 温铭生, 连建发. 基于多期SPOT-5影像的降雨型浅层滑坡遥感解译研究[J]. 北京大学学报(自然科学版), 2007, 43(2): 204-210.

    LI Tiefeng, XU Yueren, PAN Mao, CONG Weiqing, WEN Mingsheng, LIAN Jianfa. Study on interpretation of rain-induced group shallow landslides based on multi-period SPOT-5 remote sensing images[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(2): 204-210.
    [15] 李清云, 赵帅, 白潍铭. 基于遥感技术的河南方城县地质灾害解译与分析[J]. 测绘与空间地理信息, 2018, 41(8): 104-107. doi: 10.3969/j.issn.1672-5867.2018.08.028

    LI Qingyun, ZHAO Shuai, BAI Weiming. Interpretation and Analysis of Geological Disasters in Henan Fangcheng County Based on Remote Sensing Technology[J]. Geomatics & Spatial Information Technology, 2018, 41(8): 104-107. doi: 10.3969/j.issn.1672-5867.2018.08.028
    [16] 魏蕾, 晏祥省, 黄成, 杨迎冬, 杨中宝, 赵鹏, 崔同云. 一种利用地应力进行地质灾害易发性分区的综合遥感方法[P].中国: CN202310570335.6, 2023-05-19.

    WEI Lei, YAN Xiangsheng, HUANG Cheng, YANG Yingdong, YANG Zhongbo, ZHAO Peng, CUI Tongyun. Comprehensive remote sensing method for geological hazard susceptibility zoning using geostress[P].China: CN202310570335.6, 2023-05-19.
    [17] 魏蕾, 杨中宝, 杨迎冬. 2022年度云南省重点区域地质灾害精细化调查与风险评价综合遥感调查(宣威市)成果报告[R].昆明: 云南省地质环境监测院, 2023.

    WEI Lei, YANG Zhongbo, YANG Yingdong. Report on the results of the 2022 Yunnan Province key region geological hazard fine investigation and risk assessment comprehensive remote sensing survey (Xuanwei City)[R].Kunming: Yunnan Institute of Geological Environment Monitoring, 2023.
    [18] 何佶泳, 田义超, 张强, 王栋华, 张亚丽, 周慧娟. 基于DEM的喀斯特峰丛洼地地貌信息提取及形态特征分析[J]. 中国岩溶, 2024, 43(3): 595-605. doi: 10.11932/karst20240306

    HE Jiyong, TIAN Yichao, ZHANG Qiang, WANG Donghua, ZHANG Yali, ZHOU Huijuan. Geomorphic information extraction and morphological characteristics analysis of karst peak-cluster depressions based on DEM[J]. Carsologica Sinica, 2024, 43(3): 595-605. doi: 10.11932/karst20240306
    [19] 王宇. 滇池湖底塌陷漏水隐患研究的问题与建议[J]. 中国岩溶, 2024, 43(1): 1-11. doi: 10.11932/karst2023y030

    WANG Yu. Problems and suggestions on the study of collapse and water leakage at the bottom of Dianchi lakes[J]. Carsologica Sinica, 2024, 43(1): 1-11. doi: 10.11932/karst2023y030
    [20] 刘自强, 马洪生, 牟云娟. 节理裂隙发育岩溶地基数值模拟稳定性分析[J]. 中国岩溶, 2022, 41(1): 100-110. doi: 10.11932/karst20220105

    LIU Ziqiang, MA Hongsheng, MOU Yunjuan. Numerical simulation analysis and evaluation of stability of the karst foundation with developed joints and fissuress[J]. Carsologica Sinica, 2022, 41(1): 100-110. doi: 10.11932/karst20220105
    [21] 王哲, 赵超英, 刘晓杰, 李滨. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1569-1578.

    WANG Zhe, ZHAO Chaoying, LIU Xiaojie, LI Bin. Evolution analysis and deformation monitoring of Yigong landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1569-1578.
    [22] 安霞霞, 杨广斌, 许元红, 陈智虎, 张凯, 张斌. 喀斯特山区居民地多尺度遥感信息提取精度对比[J]. 中国岩溶, 2017, 36(4): 501-511. doi: 10.11932/karst20170411

    An Xiaxia, YANG Guangbin, XU Yuanhong, CHEN Zhihua, ZHANG Kai, ZHANG Bin. Comparative of resident-information extraction accuracy from multi-scale remote sensing data in karst mountainous areas[J]. Carsologica Sinica, 2017, 36(4): 501-511. doi: 10.11932/karst20170411
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  11
  • HTML浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 录用日期:  2025-09-02
  • 修回日期:  2025-09-01
  • 网络出版日期:  2025-11-07
  • 刊出日期:  2025-08-25

目录

    /

    返回文章
    返回