• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型原生岩溶环境原核微生物多样性及群落结构分析

任亚珍 李琼芳 邹兰 蒋忠诚 代群威 叶立慎 冯馨 李婉月 周晓娅 蒋萌

任亚珍,李琼芳,邹 兰,等. 典型原生岩溶环境原核微生物多样性及群落结构分析[J]. 中国岩溶,2025,44(4):749-763 doi: 10.11932/karst20250407
引用本文: 任亚珍,李琼芳,邹 兰,等. 典型原生岩溶环境原核微生物多样性及群落结构分析[J]. 中国岩溶,2025,44(4):749-763 doi: 10.11932/karst20250407
REN Yazhen, LI Qiongfang, ZOU Lan, JIANG Zhongcheng, DAI Qunwei, Yap Lik Sen, FENG Xin, LI Wanyue, ZHOU Xiaoya, JIANG Meng. Analysis of microbial diversity and community structures in typical native karst environments[J]. CARSOLOGICA SINICA, 2025, 44(4): 749-763. doi: 10.11932/karst20250407
Citation: REN Yazhen, LI Qiongfang, ZOU Lan, JIANG Zhongcheng, DAI Qunwei, Yap Lik Sen, FENG Xin, LI Wanyue, ZHOU Xiaoya, JIANG Meng. Analysis of microbial diversity and community structures in typical native karst environments[J]. CARSOLOGICA SINICA, 2025, 44(4): 749-763. doi: 10.11932/karst20250407

典型原生岩溶环境原核微生物多样性及群落结构分析

doi: 10.11932/karst20250407
基金项目: 国家自然科学基金(U21A2016, 42430715, 41472309);自然资源部岩溶生态系统与石漠化治理重点实验室开放课题(YRSW2021634)
详细信息
    作者简介:

    任亚珍(1997—),女,硕士研究生,主要从事环境微生物学研究。E-mail:1179330831@qq.com

    通讯作者:

    李琼芳(1973—),女,博士,教授,博士研究生导师,主要研究领域为环境及地质微生物学。E-mail:liqiongfang1992@126.com

  • 中图分类号: S154.3;X172

Analysis of microbial diversity and community structures in typical native karst environments

  • 摘要: 为明确典型原生岩溶区水体和土壤微生物群落特征,以广西区四处区域水体和土壤为研究对象,利用高通量技术分析其微生物多样性和微生物群落结构,解析环境因子对微生物群落的影响,并探讨岩溶微生物在碳循环中的潜在功能。结果发现:典型岩溶区水体和土壤样品中变形菌门(Proteobacteria)是优势菌;水体和土壤中对细菌群落结构影响最大的环境因素分别是${\rm{NO}}_3^{-}$和SWC;两者与碳循环相关的功能类型占比最高的均为化能异养,占比分别为水体13.00%,14.00%和土壤6.70%,11.00%,糖酵解和三羧酸循环是细菌的主要代谢功能。微生物通过这些碳循环相关的地球生化功能在岩溶环境中发挥重要作用。

     

  • 图  1  研究区域位置

    注:基于国家地理信息公共服务平台天地图网站GS(2024)0650号的标准地图制作,底图边界无修改。

    Figure  1.  Sampling locations

    Note: The map is based on the standard map from the National Geographic Information Public Service Platform Tianditu website, licensed under number GS(2024)0650. The boundaries of the base map have not been altered.

    图  2  对典型岩溶水体和土壤细菌进行不同分类水平上的丰度柱状图绘制(A:门 B:属)

    Figure  2.  Histograms depicting bacterial abundance in the water and soil samples obtained from typical karst areas (A: phylum B: genus)

    图  3  对典型岩溶区域水体和土壤细菌进行 α 多样性分析(Chao1,Shannon 和 Observed species 指数)及韦恩图绘制。

    注:A, B, C 分别为典型岩溶水体细菌 Chao1,Shannon 和 Observed species 箱型图 D, E, F 分别为典型岩溶土壤细菌 Chao1,Shannon 和 Observed species 箱型图 G, H, I 是岩溶水体和土壤原核微生物间的细菌 Chao1,Shannon 和 Observed species 箱型图 J 是水体和土壤样品共有 OTU 的韦恩图

    Figure  3.  Alpha-diversity of (Chao1, Shannon, and observed species indices) and Venn diagrams for bacteria community present in the water and soil samples obtained from typical karst areas in Guilin

    Note:A, B, and C are box plots of water bacterial communities showing Chao1, Shannon, and observed species indices, respectively D, E, and F are box plots of soil bacterial communities representing Chao1, Shannon, and observed species indices, respectively G, H, and I are box plots of bacterial Chao1, Shannon, and observed species indices between bacteria in water and soil samples J is a Venn diagram of the OTUs shared between water and soil samples

    图  4  PCoA分析的典型岩溶区域水体(W1-W4)和土壤(S1-S4)环境中的细菌群落结构

    Figure  4.  Bacterial community structures in water samples(W1-W4) and soil samples (S1-S4) obtained from typical karst areas in Guilin by PCoA

    图  5  RDA分析的水体(A)和土壤(B)环境因子与其微生物群落结构的关系

    Figure  5.  Relationships between environmental factors (A:water, B:soil) and bacterial community structures by RDA

    图  6  基于FAPROTAX(A)和PICRUSt(B)分析的原生岩溶水体和土壤中原核微生物群落的潜在功能

    Figure  6.  Potential functions of bacterial communities in native karst water and soil based on FAPROTAX (A) and PICRUSt (B)

    图  7  原生岩溶与高寒岩溶细菌多样性分析

    注:A和B分别为两地样品细菌门和属水平前十的物种丰度比较,其余为others C为样品的PCoA分析,同组样品使用同一颜色表示 D为两种岩溶样品FAPROTAX功能的组间差异检验,选择丰度前十的功能类型进行比较;横坐标是样品某一功能的百分数值,纵坐标是功能名称,不同颜色表示不同分组,最右侧为P值,*为0.01<P<0.05,**为0.001<P<0.01,***为P<0.001。W:原生岩溶水体,S:原生岩溶土壤,HW:高寒岩溶水体。

    Figure  7.  Analysis of bacterial diversity in native karst and alpine karst

    Note:A and B show the top 10 most abundant bacterial phyla and genera in samples from the two sites, respectively, with the remaining taxa grouped as “others” C presents PCoA of the samples, where samples from the same group are indicated by the same color D displays the between-group differences in FAPROTAX functional profiles for the two karst sample types, comparing the top 10 most abundant functional groups; The x-axis represents the relative abundance (%) of a given function in the samples, while the y-axis lists the functional categories, with different colors denoting different groups. P-values are shown on the right, where * indicates 0.01 < P ≤ 0.05, ** indicates 0.001 < P ≤ 0.01, and *** indicates P ≤ 0.001. W: native karst water; S: native karst soil; HW: alpine karst water.

    图  8  桂林峰丛[61](A)与黄龙高寒钙华(B)两种岩溶景观

    Figure  8.  Guilin peak cluster(A) and Huanglong alpine travertine(B)

    表  1  样品采集点

    Table  1.   Sampling points

    采样点编号地理位置地貌
    W1马山弄拉典型峰丛洼地地貌
    W2冠岩南圩村南圩河分江入口处
    水流入冠岩地下河
    W3国际岩溶研究中心
    基地附近竹江村
    漓江东岸岩溶地貌
    W4平果果化典型峰丛洼地地区
    T1马山弄拉典型峰丛洼地地貌
    T2冠岩南圩村与冠岩隔山相连
    T3国际岩溶研究中心基地漓江东岸岩溶地貌
    T4平果果化典型峰丛洼地地区
    下载: 导出CSV

    表  2  水体样品理化性质

    Table  2.   Physicochemical properties of water samples

    理化指标 W1 W2 W3 W4
    T /℃ 25.30±0.20 b 19.10±0.17 d 27.40±0.26 a 23.30±0.26 c
    pH 7.26±0.01 c 7.59±0.01 a 7.46±0.02 b 7.21±0.01 d
    EC /μS 375.00±3.00 c 280.00±2.00 d 515.00±4.36 a 433.00±3.61 b
    ORP /mV 282.00±7.21 b 305.50±3.12 a 267.30±5.80 c 274.00±3.61 bc
    DO/mg∙L−1 0.69±0.04 c 1.71±0.04 a 1.65±0.03 a 0.93±0.04 b
    ${\rm{HCO}}_3^{-}$ /mg∙L−1 266.96±6.93 c 183.06±5.19 d 373.75±5.19 a 289.85±3.75 b
    TN /mg∙L−1 1.69±0.01 b 1.74±0.03 a 1.55±0.02 c 1.76±0.03 a
    TP /mg∙L−1 0.49±0.03 b 0.50±0.03 b 0.69±0.04 a 0.41±0.03 c
    Ca /mg∙L−1 89.15±0.06 b 58.44±0.05 d 116.50±0.02 a 80.40±0.05 c
    Si /mg∙L−1 2.21±0.03 c 3.28±0.04 a 2.24±0.04 c 2.49±0.06 b
    K /mg∙L−1 0.57±0.03 a 0.55±0.05 a 0.37±0.07 b 0.57±0.06 a
    Mg /mg∙L−1 1.97±0.03 c 2.86±0.16 b 1.52±0.07 d 9.88±0.02 a
    Sr /mg∙L−1 0.05±0.01 b 0.03±0.00 b 0.05±0.01 b 0.11±0.02 a
    Cl /mg∙L−1 1.48±0.06 b 1.04±0.08 c 0.48±0.02 d 1.67±0.01 a
    ${\rm{NO}}_3^{-}$ /mg∙L−1 4.87±0.03 c 6.90±0.03 a 0.33±0.02 d 6.61±0.03 b
    ${\rm{SO}}_4^{2-}$ /mg∙L−1 5.69±0.06 b 4.12±0.03 c 3.11±0.02 d 7.82±0.03 a
    下载: 导出CSV

    表  3  土壤样品理化性质

    Table  3.   Physicochemical properties of soil samples

    理化指标 S1 S2 S3 S4
    SWC/% 13.16±1.52 b 18.97±1.27 a 14.92±1.32 b 18.48±1.19 a
    pH 8.54±0.05 a 8.10±0.03 b 8.58±0.24 a 8.28±0.05 b
    EC/μS 224.40±31.10 a 174.67±2.37 b 193.30±3.46 b 177.37±3.34 b
    OM/mg∙kg−1 31.40±3.30 b 54.89±1.11 a 27.77±1.58 b 55.96±1.87 a
    TOC/mg∙kg−1 18.22±1.91 b 31.84±0.65 a 14.37±0.92 b 32.46±1.08 a
    TN/mg∙kg−1 8.92±0.03 b 8.46±0.06 d 9.16±0.02 a 8.55±0.04 c
    TP/mg∙kg−1 2.60±0.90 b 3.78±0.05 a 2.65±0.13 b 2.01±0.10 b
    Si/% 39.27±0.00 d 48.96±0.00 b 62.31±0.00 a 59.57±0.00 c
    Ca/% 11.81±0.00 a 1.54±0.00 c 1.09±0.00 d 1.90±0.00 b
    Al /% 29.94±0.00 b 30.16±0.00 a 21.72±0.00 d 22.62±0.00 c
    Fe/% 14.14±0.00 a 13.71±0.00 b 9.51±0.00 d 9.72±0.00 c
    下载: 导出CSV
  • [1] 钟亮, 张春来, 胡芬, 曹建华. 基于Web of Science的岩溶碳循环及碳汇效应研究动态分析[J]. 中国岩溶, 2024, 43(4): 766-779, 809. doi: 10.11932/karst20240403

    ZHONG Liang, ZHANG Chunlai, HU Fen, CAO Jianhua. Analysis of development trend of karst carbon cycle and carbon sink effect based on Web of Science[J]. Carsologica Sinica, 2024, 43(4): 766-779, 809. doi: 10.11932/karst20240403
    [2] 晏红波, 曾金钊, 卢献健, 赵凤阳. 近30年岩溶地区碳储量时空变化分析及预测: 以红水河流域为例[J]. 中国岩溶, 2025, 44(1): 100-112, 123.

    YAN Hongbo, ZENG Jinzhao, LU Xianjian, ZHAO Fengyang. Analysis and prediction of spatial and temporal variation of carbon storage in limestone area in recent 30 years: A case study of the Hongshui River Basin[J]. Carsologica Sinica, 2025, 44(1): 100-112, 123.
    [3] Veress M. Karst types and their karstification[J]. Journal of Earth Science, 2020, 31(3): 621-634. doi: 10.1007/s12583-020-1306-x
    [4] Andreychouk V, Blachowicz T, Dłużewski M. Fractal analysis of tropical karst relief - South China karst case study[J]. Geological Quarterly, 2019, 63(4): 729-740.
    [5] 高旭波, 潘振东, 龚培俐, 江玉, 李成城, 李鸿煜. 微生物诱导碳酸盐岩沉淀过程及作用机理[J]. 中国岩溶, 2022, 41(3): 441-452.

    GAO Xubo, PAN Zhendong, GONG Peili, JIANG Yu, LI Chengcheng, LI Hongyu. Process and mechanism of microbial induced carbonate precipitation[J]. Carsologica Sinica, 2022, 41(3): 441-452.
    [6] 康卫华, 程从雨, 李为, 余龙江. 微型生物在岩溶碳循环中的作用研究回顾与展望[J]. 中国岩溶, 2022, 41(3): 453-464.

    KANG Weihua, CHENG Congyu, LI Wei, YU Longjiang. Review and prospect of research on the role of micro-organisms in karst carbon cycle[J]. Carsologica Sinica, 2022, 41(3): 453-464.
    [7] Durak G M, Brownlee C, Wheeler G L. The role of the cytoskeleton in biomineralisation in haptophyte algae[J]. Scientific Reports, 2017, 7(1): 1-12. doi: 10.1038/s41598-016-0028-x
    [8] Chin Y L, Turchyn A V, Zvi S, Pieter B, Lampronti G I, Tosca N J. The role of microbial sulfate reduction in calcium carbonate polymorph selection[J]. Geochimica et Cosmochimica Acta, 2018, 237: 184-204. doi: 10.1016/j.gca.2018.06.019
    [9] Schwantes-cezario N, Medeiros L P, De Oliveira A G, Nakazato G, Takayama Kobayashi R K, Toralles B M. Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil[J]. International Biodeterioration & Biodegradation, 2017, 123: 200-205.
    [10] Bai Y, Guo X J, Li Y Z, Huang T. Experimental and visual research on the microbial induced carbonate precipitation by Pseudomonas aeruginosa[J]. AMB Express, 2017, 7(1): 1-9. doi: 10.1186/s13568-016-0313-x
    [11] 刘璐, 李福春, 李磊, 张宠宏, 吕杰杰. 细菌碳酸酐酶促进形成的碳酸盐矿物[J]. 中国岩溶, 2017, 36(4): 433-440.

    LIU Lu, LI Fuchun, LI Lei, ZHANG Chonghong, LYU Jiejie. Carbonic anhydrase excreted by bacteria induces the formation of carbonate minerals[J]. Carsologica Sinica, 2017, 36(4): 433-440.
    [12] 李福春, 马恒, 苏宁, 王金平, 刘铭艳, 汪君, 滕飞. 梭菌对含镁方解石形态的控制及其可能机理[J]. 高校地质学报, 2011, 17(1): 13-20.

    LI Fuchun, MA Heng, SU Ning, WANG Jinping, LIU Mingyan, WANG Jun, TENG Fei. Clostridium sp. controlled morphology of Mg-bearing calcite and its implication for possible mechanism[J]. Geological Journal of China Universities, 2011, 17(1): 13-20.
    [13] 李一良, 王汝成, 周根涛, 张传伦. 微生物成矿(英文)[J]. 高校地质学报, 2005(2): 167-180.

    LI Yiliang, WANG Rucheng, ZHOU Gentao, ZHANG Chuanlun. Microbial biomineralization[J]. Geological Journal of China Universities, 2005(2): 167-180.
    [14] 周雪莹, 杜叶, 连宾. 不同培养条件对胶质芽孢杆菌诱导碳酸钙晶体形成的影响[J]. 微生物学报, 2010, 50(7): 955-961.

    ZHOU Xueying, DU Ye, LIAN Bin. Effect of different culture conditions on carbonic anhydrase from Bacillus mucilaginosus inducing calcium carbonate crystal formation[J]. Acta Microbiologica Sinica, 2010, 50(7): 955-961.
    [15] 韩金鑫, 连宾, 唐源, 刘世荣, 龚国洪. 恶臭假单胞菌对碳酸钙的诱导矿化作用[J]. 南京大学学报(自然科学版), 2013, 49(06): 681-688.

    HAN Jinxin, LIAN Bin, TANG Yuan, LIU Shirong, GONG Guohong. Induced mineralization of calcium carbonate by Pseudomonas putida[J]. Journal of Nanjing University (natural science), 2013, 49(06): 681-688.
    [16] 连宾, 袁道先, 刘再华. 岩溶生态系统中微生物对岩溶作用影响的认识[J]. 科学通报, 2011, 56(26): 2158-2161. doi: 10.1360/csb2011-56-26-2158

    LIAN Bin, YUAN Daoxian, LIIU Zaihua. Effect of microbes on karstification in karst ecosystems[J]. Chinese Science Bull, 2011, 56(26): 2158-2161. doi: 10.1360/csb2011-56-26-2158
    [17] Sun S Y, Guo P Y, Zou X, Lin S. The indication of environmental significance by mineral characteristics during biomineralization of living coccolithophores[J]. Frontier of Environmental Science, 2016, 5(1): 28-31.
    [18] 杨清清. 产碳酸酐酶矿化菌固化砂土试验研究[D]. 绵阳: 西南科技大学, 2018.

    YANG Qingqing. Experimental study on the sand soil solidification using carbonic anhydrase induced precipitation[D]. Mianyang: Southwest University of Science and Technology, 2018.
    [19] 杨清清, 何鑫, 李琼芳, 于璐嘉, 王旭辉, 潘玲. 不同固化方式对碳酸酐酶矿化菌固化砂土效果影响研究[J]. 工业建筑, 2018, 48(7): 38-43.

    YANG Qingqing, HE Xin, LI Qiongfang, YU Lujia, WANG Xuhui, PAN Ling. Study of effects of different cementing methods for carbonic anhydrase mineralized bacteria on cementation of sand soil[J]. Industrial Construction, 2018, 48(7): 38-43.
    [20] 刘世豪. 微生物诱导碳酸钙沉淀(MICP)固化粗颗粒盐渍土的试验研究[D]. 兰州: 兰州理工大学, 2021.

    LIU Shihao. Experimental study on the solidification of coarse-grained saline soil by microbial-induced calcium carbonate precipitation(MICP)[D]. Lanzhou: Lanzhou University of Technology, 2021.
    [21] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学, 2014.

    ZHAO Qian. Experimental study on soil improvement using microbial induced calcite precipitation(MICP)[D]. Beijing: China University of Geosciences, 2014.
    [22] 彭劼, 何想, 刘志明, 冯清鹏, 何稼. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.

    PENG Jie, HE Xiang, LIU Zhiming, FENG Qingpeng, HE Jia. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774.
    [23] 李琼芳, 何鑫, 陈超, 杨清清, 吕治州. 两株嗜冷碳酸钙矿化菌对大理石表面修复效果研究[J]. 人工晶体学报, 2018, 47(1): 172-178.

    LI Qiongfang, HE Xin, CHEN Chao, YANG Qingqing, LYU Zhizhou. Effect of two psychrotrophic calcium carbonate mineralized bacteria on the surface repair of marble[J]. Journal of Synthetic Crystals, 2018, 47(1): 172-178.
    [24] 竹文坤. 微生物诱导碳酸钙矿化及其在石质材料表面覆膜基础研究[D]. 绵阳: 西南科技大学, 2011.

    ZHU Wenkun. Fundamental studies of calcium carbonate mineralization induced by microbiologically in stone materials surface protection[D]. Mianyang: Southwest University of Science and Technology, 2011.
    [25] Pentecost A. The quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 1995, 14(10): 1005-1028. doi: 10.1016/0277-3791(95)00101-8
    [26] 杨富巍. 无机胶凝材料在不可移动文物保护中的应用[D]. 杭州: 浙江大学, 2011.

    YANG Fuwei. Study of inorganic gelling materials for the conservation of immovable relics[D]. Hangzhou: Zhejiang University, 2011.
    [27] Dhami N K, Reddy M S, Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritages[J]. Frontiers in Microbiology, 2014, 5(304): 304-317.
    [28] Hershey O S, Kallmeyer J, Wallace A, Barton M D, Barton H A. High microbial diversity despite extremely low biomass in a deep karst aquifer[J]. Frontiers in Microbiology, 2018, 9: 1-13. doi: 10.3389/fmicb.2018.00001
    [29] Yuan C, Wang H, Dai X, Chen M, Luo J, Yang R, Ding F. Effect of karst microhabitats on the structure and function of the rhizosphere soil microbial community of rhododendron pudingense[J]. Sustainability, 2023, 15(9): 1-20.
    [30] Jiang C, Zeng H. Comparison of soil microbial community structure and function for karst tiankeng with different degrees of degradation[J]. Ecology and Evolution, 2022, 12(12): 1-11.
    [31] Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, Duan Y, Engel AS. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification[J]. Front Microbiol, 2016, 7: 1-14.
    [32] Jiang C, Li H, Zeng H. Karst tiankeng create a unique habitat for the survival of soil microbes: Evidence from ecoenzymatic stoichiometry[J]. Frontiers in Ecology and Evolution, 2022(10): 1-10.
    [33] Mucsi M, Krett G, Szili-Kovács T, Móga J, Borsodi A K. Denaturing gradient gel electrophoresis and multi-SIR profiles of soil microbial communities from a karst doline at Aggtelek National Park, Hungary[J]. Folia Microbiol, 2021, 66: 107-114. doi: 10.1007/s12223-020-00828-y
    [34] Liu F T, Kou D, Chen Y L, Xue K, Jessica G E, Chen L Y, Yang G B, Yang Y H. Altered microbial structure and function after thermokarst formation. Global Change Biology. 2021, 4(27): 823-835.
    [35] Wang C W, Li W, Shen T M, Cheng W L, Yan Z, Yu L J. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area. Geoderma, 2018, 313: 17-24.
    [36] 靳振江, 汤华峰, 李敏, 黄炳富, 李强, 张家喻, 黎桂文. 典型岩溶土壤微生物丰度与多样性及其对碳循环的指示意义[J]. 环境科学, 2014, 35(11): 4284-4290.

    JIN Zhenjiang, YANG Huafeng, LI Min, HUANG Bingfu, LI Qiang, ZHANG Jiayu, LI Guiwen. Microbial community abundance and diversity in typical karst ecosystem to indicate soil carbon cycle[J]. Environmental Science, 2014, 35(11): 4284-4290.
    [37] 魏复盛. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002.
    [38] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [39] Magoč T, Salzberg S L. Flash: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507
    [40] Bokulich N, Subramanian S, Faith J, Gevers D, Gordon J, Knight R, Mills D, Caporaso G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59. doi: 10.1038/nmeth.2276
    [41] Rognes T, Flouri T, Nichols B, Quince C, Mahé F. Vsearch: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: 1-22.
    [42] Haas B J, Gevers D, Earl A M, Feldgarden M, Ward D V, Giannoukos G, Ciulla D, Tabbaa D, Highlander S K, Sodergren E, Methé B, Desantis T Z, Petrosino J F, Knight R, Birren B W. Chimeric 16S rRNA sequence formation and detection in sanger and 454- pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3): 494-504. doi: 10.1101/gr.112730.110
    [43] Edgar R C. Uparse: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604
    [44] Wang Q, Garrity G M, Tiedje J M, Cole J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. doi: 10.1128/AEM.00062-07
    [45] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner F O. The silva ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
    [46] Chikkanna A, Ghosh D, Sajeev K. Bio-weathering of granites from Eastern Dharwar Craton (India): a tango of bacterial metabolism and mineral chemistry[J]. Biogeochemistry, 2021, 153: 303-322. doi: 10.1007/s10533-021-00791-x
    [47] Li Y X, Hao W J, Peng S J, Sun T T, Zhao J M, Dong Z J. Composition and potential functions of bacterial communities associated with aurelia polyps[J]. Frontiers in Marine Science, 2022, 9: 1-11.
    [48] Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353: 1272-1277. doi: 10.1126/science.aaf4507
    [49] Wang Q, Lv R Y, Rene E R, Qi X Y, Hao Q, Du Y D, Zhao C C, Xu F, Kong Q. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater[J]. Bioresource Technology, 2020, 302: 1-9.
    [50] Xu Z S, Dai X H, Chai X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of The Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348
    [51] Porter N T, Luis A S, Martens E C. Bacteroides thetaiotaomicron[J]. Trends in Microbiology, 2018, 26(11): 966-967. doi: 10.1016/j.tim.2018.08.005
    [52] Wang H X, Zhang M L, Lv Q, Xue J B, Yang J, Han X M. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source[J]. Journal of Environmental Management, 2022, 310: 1-13.
    [53] Helmi F M, Elmitwalli H R, Elnagdy S M, El-Hagrassy A F. Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis[J]. Ecological Engineering, 2016, 90: 367-371. doi: 10.1016/j.ecoleng.2016.01.044
    [54] Karishma M, Trivedi V D, Choudhary A, Mhatre A, Kambli P, Desai J, Phale P S. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas[J]. FEMS Microbiology Letters, 2015, 362(20): 1-7.
    [55] Chandel N S. Glycolysis[J]. Cold Spring Harbor Perspectives in Biology, 2021, 13: 1-12.
    [56] Arnold P K, Finley L W S. Regulation and function of the mammalian tricarboxylic acid cycle[J]. Journal of Biological Chemistry, 2023, 299(2): 1-21.
    [57] Ragsdale S W. Stealth reactions driving carbon fixation[J]. 2018, Science, 359: 517-518.
    [58] 董发勤, 李刚, 代群威, 周琳, 王富东, 赵学钦, 蒋忠诚, 张强. 雪宝顶区块流域钙华形成的生物作用研究[J]. 中国岩溶, 2021, 40(1): 11-18.

    DONG Faqin, LI Gang, DAI Qunwei, ZHOU Lin, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang. Biological effects on travertine forming in Xuebaoding drainage basin region[J]. Carsologica Sinica, 2021, 40(1): 11-18.
    [59] 肖玉军. 黄龙风景区水体细菌多样性研究[D]. 雅安: 四川农业大学, 2014.

    XIAO Yujun. Study of the water bacterial diversity from Huanglong[D]. Ya'an: Sichuan Agricultural University, 2014.
    [60] Gao W H, Zhang J, Sun D, Zhang W Z, Wang S K, Guo J W, Xu H, Zhao S J, Zeng Y, Liu X Z. Water environmental characteristics and eutrophication evaluation of alpine karst mountains in Huanglong, Sichuan, China[J]. ACS Earth and Space Chemistry, 2023, 7(5): 1083-1096. doi: 10.1021/acsearthspacechem.3c00015
    [61] Yang X W, Tang G A, Meng X, Xiong L Y. Classification of karst fenglin and fengcong landform units based on spatial relations of terrain feature points from DEMs[J]. Remote Sens, 2019, 11: 1950. doi: 10.3390/rs11161950
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  14
  • HTML浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-17
  • 录用日期:  2025-06-25
  • 修回日期:  2025-06-09
  • 网络出版日期:  2025-11-07
  • 刊出日期:  2025-08-25

目录

    /

    返回文章
    返回