• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶区不同坡位林地土壤N2O排放特征及其影响机制

杨明臻 杨霖 刘丽君 文冬妮 曹建华 朱同彬 余龙飞 李亮 梁健 卢丹美

杨明臻,杨 霖,刘丽君,等. 岩溶区不同坡位林地土壤N2O排放特征及其影响机制[J]. 中国岩溶,2025,44(4):711-721, 733 doi: 10.11932/karst20250405
引用本文: 杨明臻,杨 霖,刘丽君,等. 岩溶区不同坡位林地土壤N2O排放特征及其影响机制[J]. 中国岩溶,2025,44(4):711-721, 733 doi: 10.11932/karst20250405
YANG Mingzhen, YANG Lin, LIU Lijun, WEN Dongni, CAO Jianhua, ZHU Tongbin, YU Longfei, LI Liang, LIANG Jian, LU Danmei. Characteristics and influencing mechanisms of soil nitrous oxide (N2O) emissions from forestlands at different slope positions in karst regions[J]. CARSOLOGICA SINICA, 2025, 44(4): 711-721, 733. doi: 10.11932/karst20250405
Citation: YANG Mingzhen, YANG Lin, LIU Lijun, WEN Dongni, CAO Jianhua, ZHU Tongbin, YU Longfei, LI Liang, LIANG Jian, LU Danmei. Characteristics and influencing mechanisms of soil nitrous oxide (N2O) emissions from forestlands at different slope positions in karst regions[J]. CARSOLOGICA SINICA, 2025, 44(4): 711-721, 733. doi: 10.11932/karst20250405

岩溶区不同坡位林地土壤N2O排放特征及其影响机制

doi: 10.11932/karst20250405
基金项目: 国家自然科学基金面上项目 (42177243); 广西自然科学基金杰出青年项目(2023GXNSFFA026010);2025年广西地矿局部门预算前期地质科研项目“岩溶石山区水土流失成因与阻控关键技术研究(GXGS202511)
详细信息
    作者简介:

    杨明臻(1999—),男,硕士研究生,研究方向为岩溶区土壤氮循环。E-mail:1481680769@qq.com

    通讯作者:

    杨霖(1992—),女,博士后,研究方向为岩溶生态系统氮素生物化学循环。E-mail:y523528@163.com

  • 中图分类号: S153.6

Characteristics and influencing mechanisms of soil nitrous oxide (N2O) emissions from forestlands at different slope positions in karst regions

  • 摘要: 岩溶区地形复杂, 土壤氧化亚氮(N2O)排放差异较大,量化其排放有助于全球N2O排放清单的精准编制。目前岩溶区不同地形条件下土壤N2O的空间排放特征及其影响机制尚不清楚。本研究区位于西南典型岩溶区桂林,选择不同地形坡位(坡顶、坡中和坡脚)的自然林地连续监测154 d 土壤N2O排放,并采用15N同位素标记技术测定土壤矿化速率与硝化速率,从土壤氮供应角度揭示N2O排放的影响机制。结果表明,随坡位下降,土壤有机碳、全氮含量和pH显著提高。不同地形坡位下土壤N2O排放具有较大差异,排放通量介于5.21~39.6 μg N·m−2·h−1之间。坡脚土壤N2O累积排量(0.71 kg N·hm−2)最高,其次是坡中(0.53 kg N·hm−2),坡顶N2O最低(0.43 kg N·hm−2)。岩溶区土壤具有较高的矿化和硝化速率,且随着坡位降低,土壤矿化和硝化速率均显著提高。与坡顶(2.27 mg N·kg−1·d−1和5.11 mg N·kg−1·d−1)相比,坡脚土壤矿化和硝化速率分别提高到5.98 mg N·kg−1·d−1和8.85 mg N·kg−1·d−1。相关分析表明,土壤N2O累积排放量与矿化速率和硝化速率、有机碳、全氮、pH呈显著正相关,表明岩溶区不同坡位下, 土壤理化性质通过影响无机氮供应能力(矿化速率和硝化速率)来改变N2O排放。本研究结果强调了在评估岩溶区土壤N2O排放时,应充分重视地形的影响。

     

  • 图  1  不同坡位森林采样地点示意图

    Figure  1.  Schematic representation of forestland sampling sites at different slope positions

    图  2  不同坡位土壤的矿化速率与硝化速率

    注:图中不同字母表示相同指标在不同坡位之间差异显著(P <0.05),下同。

    Figure  2.  Rates of mineralization and nitrification in soils at different slope positions

    Note: Different letters indicate significant differences for the same indicator at different slope positions. (hereinafter the same)

    图  3  不同坡位土壤的NH$_4^{+}$与${\rm{NO}}_3^{-}$平均滞留时间

    Figure  3.  Mean detention times of NH$_4^{+}$ and ${\rm{NO}}_3^{-}$ in soils at different slope positions

    图  4  不同坡位土壤N2O排放通量与N2O累积排放量

    Figure  4.  N2O emission flux and the cumulative N2O emissions in soils under different slope positions

    图  5  不同坡位土壤WFPS和土壤温度、降水量

    Figure  5.  Soil WFPS, soil temperatures, and precipitation at different slope positions

    图  6  土壤N2O排放通量与土壤WFPS和土壤温度的相关性

    Figure  6.  Correlations of N2O emission fluxes with soil WFPS and temperatures

    图  7  土壤基本理化性质与矿化速率、硝化速率、N2O累积排放量的相关性热图

    Figure  7.  Correlation heat map between soil physicochemical properties with soil mineralization and nitrification rates and the cumulative N2O emissions

    图  8  偏最小二乘路径模型(PLS-PM)中土壤理化性质和土壤无机氮生产对N2O累积排放的影响

    Figure  8.  Effects of soil physicochemical properties and soil inorganic N production on the cumulative N2O emissions in a Partial Least Squares Path Model(PLS-PM)

    表  1  不同坡位条件下土壤基本理化性质

    Table  1.   Soil physicochemical properties under different slope conditions

    指标 坡顶 坡中 坡脚
    有机碳/g·kg−1 43.2 ± 4.07b 58.8 ± 0.77a 59.6 ± 2.53a
    全氮 /g·kg−1 4.25 ± 0.35b 5.65 ± 0.05a 5.75 ± 0.20a
    C: N 10.2 ± 0.12a 10.4 ± 0.23a 10.5 ± 0.81a
    WHC /% 107 ± 5.58b 128 ± 4.63a 114 ± 2.95b
    pH 6.75 ± 0.09c 7.47 ± 0.13b 7.74 ± 0.10a
    无机氮 /mg·kg−1 15.9 ± 2.05b 21.9 ± 0.21a 20.2 ± 0.43a
    ${\rm{NO}}_3^{-}$: NH$_4^{+}$ 2.94 ± 0.20c 8.13 ± 0.70a 4.79 ± 0.47b
    NH$_4^{+}$/mg·kg−1 3.66 ± 0.22a 2.39 ± 0.17b 3.51 ± 0.36a
    ${\rm{NO}}_3^{-}$/mg·kg−1 12.2 ± 2.15c 19.4 ± 0.43a 16.7 ± 0.07b
    注:表中同行不同字母表示不同坡位土壤各指标差异显著(P <0.05)。
    Note: Different lowercase letters indicate significant differences in various indicators of soils under different slope positions (P < 0.05).
    下载: 导出CSV
  • [1] 高淼, 吴秀芹. 广西壮族自治区碳排放时空规律及达峰预测[J]. 中国岩溶, 2023, 42(4): 763-774.

    GAO Miao, WU Xiuqin. Spatio-temporal patterns and peak prediction of carbon emissions in Guangxi Zhuang Autonomous Region[J]. Carsologica Sinica, 2023, 42(4): 763-774.
    [2] Prather M J, Holmes C D, Hsu J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry[J]. Geophysical Research Letters, 2012: 39.
    [3] Joos F, Buchmann B. The 10th International Carbon Dioxide Conference (ICDC10) and the 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2017)[J]. Atmospheric Chemistry and Physics, 2018, 18(11): 7841-7842. doi: 10.5194/acp-18-7841-2018
    [4] Hermanson L, Smith D, Seabrook M, Bilbao R, Doblas R F, Tourigny E, Lapin V. WMO global annual to decadal climate update: a prediction for 2021-25[J]. Bulletin of the American Meteorological Society, 2022, 103(4): E1117-E1129. doi: 10.1175/BAMS-D-20-0311.1
    [5] Mackay A. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Journal of Environmental Quality, 2008, 37(6): 2407-2407. doi: 10.2134/jeq2008.0015br
    [6] Hirsch A I, Michalak A M, Bruhwiler L M, Peters W,Dlugokencky E J, Tans P P. Inverse modeling estimates of the global nitrous oxide surface flux from 1998-2001[J]. Global Biogeochemical Cycles, 2006: 20 (1).
    [7] Melillo J M, Steudler P A, Feigl B J, Neill C, Garcia D, Piccolo M C, Cerri C C, Tian H. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D24): 34179-34188. doi: 10.1029/2000JD000036
    [8] Xie D, Si G Y, Zhang T, Mulder J, Duan L. Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China[J]. Environmental Pollution, 2018, 243: 1818-1824. doi: 10.1016/j.envpol.2018.09.113
    [9] Yu L F, Wang Y H, Zhang X S, Dorsch P, Mulder J. Phosphorus addition mitigates N2O and CH4 emissions in N-saturated subtropical forest, SW China[J]. Biogeosciences, 2017, 14(12): 3097-3109. doi: 10.5194/bg-14-3097-2017
    [10] 洪思思, 巩合德, 朱秀雯, 宋清海, 张一平, 周文君, 张孝良, 沙丽清. 西双版纳热带雨林土壤N2O和CO2排放对氮添加的响应[J]. 西部林业科学, 2023, 52(3): 118-127.

    HONG Sisi, GONG Hede, ZHU Xiuwen, SONG Qinghai, ZHANG Yiping, ZHOU Wenjun, ZHANG Xiaoliang, SHA Liqing. Response of soil N2O and CO2 emissions to nitrogen addition in Xishuangbanna tropical rain forest[J]. Journal of West China Forestry Science, 2023, 52(3): 118-127.
    [11] Zhang J W, Liesch T, Chen Z, Goldscheider N. Global analysis of land-use changes in karst areas and the implications for water resources[J]. Hydrogeology Journal, 2023, 31(5): 1197-1208. doi: 10.1007/s10040-023-02650-5
    [12] 岳祥飞, 李衍青, 刘鹏. 广西岩溶区灌木林地凋落物: 土壤碳、氮、磷化学计量特征[J]. 中国岩溶, 2023, 42(5): 1106-1116.

    YUE Xiangfei, LI Yanqing, LIU Peng. Litter of shrub land in karst area of Guangxi:Stoichiometric characteristics of soil carbon, nitrogen and phosphorus[J]. Carsologica Sinica, 2023, 42(5): 1106-1116.
    [13] 谢银财, 杨慧, 李军, 缪雄谊, 杨霖, 吴树诚. 岩溶区石灰土演化过程中钙影响土壤氮矿化的机制研究[J]. 中国岩溶, 2024, 43(5): 1057-1064.

    XIE Yincai, YANG Hui, LI Jun, MIAO Xiongyi, YANG Lin, WU Shucheng. Research on the mechanism of calcium affecting soil nitrogen mineralization during the vvolution of limestone soil in karst areas[J]. Carsologica Sinica, 2024, 43(5): 1057-1064.
    [14] 杨会, 朱同彬, 吴夏, 吴华英, 唐伟, 蓝高勇, Christoph Müller. 岩溶区砂糖桔短期种植对土壤氮转化过程的影响[J]. 中国岩溶, 2023, 42(1): 52-60.

    YANG Hui, ZHU Tongbin, WU Xia, WU Huaying, TANG Wei, LAN Gaoyong, Christoph Müller. Effect of sugar orange short-term planting on soil nitrogen conversion process in karst area[J]. Carsologica Sinica, 2023, 42(1): 52-60.
    [15] YANG S T, YANG L, WEN D N, LIU L J, NI K, CAO J H, ZHU T B, Müller C. Soil calcium constrains nitrogen mineralization and nitrification rates in subtropical karst regions[J]. Soil Biology and Biochemistry, 2023, 186: 109176. doi: 10.1016/j.soilbio.2023.109176
    [16] Müller A K, Matson A L, Corre M D, Veldkamp E. Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition[J]. Frontiers in Earth Science, 2015: 3:66.
    [17] WANG K L, ZHANG C H, CHEN H S, YUE Y M, ZHANG W, ZHANG M Y, QI X K, FU Z Y. Karst landscapes of China: patterns, ecosystem processes and services[J]. Landscape Ecology, 2019, 34(12): 2743-2763. doi: 10.1007/s10980-019-00912-w
    [18] HE Y H Z, WANG L, NIU Z, Nath B. Vegetation recovery and recent degradation in different karst landforms of southwest China over the past two decades using GEE satellite archives[J]. Ecological Informatics, 2022, 68: 101555. doi: 10.1016/j.ecoinf.2022.101555
    [19] Canton Y, Rodríguez-Caballero E, Contreras S, Villagarcia L, LI X Y, Solé-Benet A, Domingo F. Vertical and lateral soil moisture patterns on a Mediterranean karst hillslope[J]. Journal of Hydrology and Hydromechanics, 2016, 64(3): 209-217. doi: 10.1515/johh-2016-0030
    [20] LIU H S, ZHENG X Z, LI Y F, YU J H, DING H, Sveen, T R, ZHANG Y S. Soil moisture determines nitrous oxide emission and uptake[J]. Science of the Total Environment, 2022, 822: 153566. doi: 10.1016/j.scitotenv.2022.153566
    [21] Osaka K, Ohte N, Koba K, Katsuyama M, Nakajima T. Hydrologic controls on nitrous oxide production and consumption in a forested headwater catchment in central Japan[J]. Journal of Geophysical Research, 2006.
    [22] Lark R M, Milne A E, Addiscott T M, Goulding K W T, Webster C P, Flaherty S O. Scale and location-dependent correlation of nitrous oxide emissions with soil properties: analysis using wavelets[J]. European Journal of Soil Science, 2004, 55: 611-627. doi: 10.1111/j.1365-2389.2004.00620.x
    [23] YU L F, ZHU J, ZHANG X S, WANG Z W, Dorsch P, Mulder J. Humid Subtropical Forests Constitute a Net Methane Source: A Catchment-Scale Study[J]. Journal of Geophysical Research-Biogeosciences, 2019, 124(9): 2927-2942. doi: 10.1029/2019JG005210
    [24] Priha O, Smolander A. Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites[J]. Soil Biology and Biochemistry, 1999, 31: 965-977. doi: 10.1016/S0038-0717(99)00006-1
    [25] Kirkham D, Bartholomew W V. Equations for following nutrient transformations in soil utilizing tracer data[J]. Soil Sci. Soc. Am. Proc, 1954, 18: 33-34. doi: 10.2136/sssaj1954.03615995001800010009x
    [26] Corre M D, Brumme R, Veldkamp E, Beese F O. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany[J]. Global Change Biol, 2007, 13: 1509-1527. doi: 10.1111/j.1365-2486.2007.01371.x
    [27] DUAN Pengpeng. Mechanisms underlying the responses of soil N2O production by ammonia oxidizers to nitrogen addition are mediated by topography in a subtropical forest[J]. Geoderma, 2022: 425.
    [28] TANG X L, LIU S G, ZHOU G Y, ZHANG D Q, ZHOU C Y, Dörsch P. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China[J]. Global Change Biology (2006): 546-60.
    [29] ZHU J, Mulder J, WU L P, MENG X X, WANG Y H. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China[J]. Biogeosciences, 2013, 10(3): 1309-1321. doi: 10.5194/bg-10-1309-2013
    [30] 曹建华, 袁道先, 章程, 蒋忠诚. 受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004(1): 1-8.

    CAO Jianhua, YUAN Daoxian, ZHANG Cheng, JIANG Zhongcheng. Karst ecosystem constrained by geological conditions in southwest China[J]. Earth and Environment, 2004(1): 1-8.
    [31] GUO Y F, Naeem A, Becker-Fazekas S, Pitann, B, Mühling K H. Efficacy of four nitrification inhibitors for the mitigation of nitrous oxide emissions under different soil temperature and moisture[J]. Journal of Plant Nutrition and Soil Science, 2022, 185(1): 60-68. doi: 10.1002/jpln.202000367
    [32] FANG Y T, Gundersen P, ZHANG W, ZHOU G Y, Christiansen J R, MO J M, DONG S F, ZHANG T. Soil-atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China[J]. Plant and Soil, 2009, 319(1-2): 37-48. doi: 10.1007/s11104-008-9847-2
    [33] YU L F, ZHU J, JI H L, BAI X L, LIN Y X, ZHANG Y P, SHA L Q, LIU Y T, SONG Q H, Dörsch P, Mulder J, ZHOU W J. Topography-related controls on N2O emission and CH4 uptake in a tropical rainforest catchment[J]. Science of the Total Environment, 2021: 775,145616.
    [34] 文冬妮, 杨程, 杨霖, 秦兴华, 孟磊, 何秋香, 朱同彬, Christoph Müller. 岩溶区农业种植对土壤有机氮矿化的影响[J]. 中国岩溶, 2020, 39(2): 189-195.

    WEN Dongni, YANG Cheng, YANG Lin, QIN Xinghua, MENG Lei, HE Qiuxiang, ZHU Tongbin, Christoph Müller. The influence of agricultural planting in karst areas on soil organic nitrogen mineralization[J]. Carsologica Sinica, 2020, 39(2): 189-195.
    [35] WANG J, ZHANG J, Mueller C, CAI Z C. Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Journal of Soils and Sediments, 2017, 17(2): 423-431. doi: 10.1007/s11368-016-1530-2
    [36] FU M. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils[D]. Ames: Iowa State University, 1989.
    [37] Elrys A S, WANG J, Metwally M A S, CHENG Y, ZHANG J B, CAI Z C, CHANG X S, Müller, C. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen[J]. Global Change Biology, 2021, 27(24): 6512-6524. doi: 10.1111/gcb.15883
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  20
  • HTML浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-25
  • 录用日期:  2025-06-18
  • 修回日期:  2025-05-19
  • 网络出版日期:  2025-11-07
  • 刊出日期:  2025-08-25

目录

    /

    返回文章
    返回