Comparative analysis of carbon sink effects in karst water systems in three-dimensional climate zones: Taking the Lijiang Basin-the Jinshajiang karst area as an example
-
摘要: 为积极应对全球气候变化,助力实现“碳达峰碳中和”的战略目标,近年来,我国地质工作者从多角度证实了岩溶作用在碳汇方面的巨大潜力。其中,岩溶作用影响因素研究是准确计算岩溶碳汇强度的基础条件之一,文章以丽江盆地—金沙江岩溶区同一含水层、土地利用相近、不同高程的多个岩溶泉水作为研究对象,利用水文水化学资料,根据水化学—径流法计算各级地下水系统碳酸盐岩风化消耗CO2质量浓度和碳汇通量,结果表明:立体气候区碳酸盐岩风化消耗CO2质量浓度与海拔呈负相关,即海拔越低,消耗CO2质量浓度越高,且随着海拔的降低,消耗CO2质量浓度的增加幅度有上升的趋势;高寒山区碳酸盐岩风化碳汇通量与海拔呈正相关,即海拔越高,碳汇通量越大,中低海拔区碳汇通量与海拔呈负相关,即海拔越低,碳汇通量越大,且有增幅上升趋势,上升幅度小于消耗CO2质量浓度。说明立体气候区海拔的差异引起岩溶环境(温度、降水、风化作用、植被类型、土壤厚度等)的不同,进而影响岩溶的发育过程,是岩溶作用和碳汇效应差异的主要因素,人为改造外部环境(如地形、植被和土壤)是可以改变岩溶碳汇强度的。该研究为准确评估岩溶碳汇强度提供了地质依据,对认识全球碳循环机制、推动“碳达峰碳中和”目标的实现具有重要意义。
-
关键词:
- 立体气候 /
- 岩溶水系统 /
- 风化碳汇 /
- 垂向对比 /
- 丽江盆地―金沙江片区
Abstract:To actively address global climate change and achieve the strategic goals of carbon peak and carbon neutrality, Chinese geologists have recently confirmed from multiple perspectives that the potential of karst carbon sinks is substantial. Studying the factors influencing karst processes is fundamental to accurately quantifying the intensity of karst carbon sinks. This study took multiple karst springs within the same aquifer, characterized by similar land use but different elevations in the Lijiang Basin–the Jinshajiang karst area as the research objects. Based on hydrological and hydrochemical data, the mass concentration of CO2 consumed by carbonate rock weathering and the carbon sink flux at each level of the groundwater system were calculated by the hydrochemical-runoff method. The results show that climatic conditions are the main factors controlling karst carbon sink effects. The mass concentration of CO2 consumed by carbonate rock weathering is mainly influenced by temperature and is negatively correlated with altitude. In other words, the lower the altitude, the higher the mass concentration of CO2 consumed by carbonate rock weathering. Additionally, the rate of increase in the mass concentration of CO2 consumed by carbonate rock weathering tends to rise as altitude decreases. The carbon sink flux is mainly controlled by temperature and precipitation. In high-altitude mountainous regions where carbonate rocks are mainly affected by freeze-thaw weathering, the carbon sink flux is mainly controlled by precipitation and shows a positive correlation with altitude; that is, higher altitude receive greater precipitation, resulting in an increased carbon sink flux. Conversely, when carbonate rocks are primarily affected by chemical weathering, the carbon sink flux is mainly controlled by temperature and affected by precipitation, exhibiting a negative correlation with altitude. In this case, lower altitudes correspond to a greater carbon sink flux from carbonate rock weathering, with an increasing trend in magnitude. However, this change is less pronounced than the variation in the mass concentration of CO2 consumed by carbonate rock weathering, which decreases due to the reduction of precipitation. This indicates that the variations in altitude in a three-dimensional climate zone give rise to different climate types,such as precipitation form and amount, temperature, air pressure, evaporation, sunshine, etc.,thereby controlling the distribution of vegetation types and organisms, the intensity of weathering, and indirectly controlling the development and formation processes of karst and distribution of soil. Therefore, differences in altitude alter nearly all external environmental factors that control and affect karst development except for the hydraulic gradient. This results in the formation of diverse karst morphologies and distinct karst water system characteristics, which further amplify variations in karst features and carbon sink intensity. This is the main reason for the differences in karst and carbon sink intensity observed within the same area. The hydrological characteristics of karst water systems, along with vegetation and soil cover conditions, are important factors influencing the mass concentration of CO2 consumed by carbonate rock weathering and the carbon sink flux. These factors can even have a greater impact than climatic conditions. Therefore, human modifications of the external environment can change the intensity of karst carbon sinks, supporting strategic goals related to carbon peak and carbon neutrality. This study provides a geological basis for accurately assessing the intensity of karst carbon sinks, which is of great significance for understanding the global carbon cycle and advancing efforts toward carbon peak and carbon neutrality. -
图 2 研究区三级岩溶地下水系统垂向分布示意图
1.第四系 2.三叠系 3.二叠系 4.泥盆系 5.石炭系 6.玄武岩 7.冲、洪、湖积 8.碳酸盐岩 9.砂岩 10.断层或地质界线 11.地下水径流方向 12.地下水排泄(泉)点
Figure 2. Vertical distribution of the tertiary karst groundwater system in the study area
Note:1.quaternary system 2.triassic system 3.permian system 4.devonian system 5.carboniferous system 6.basalt 7.alluvial,diluvial,and lacustrine deposits 8.carbonate rocks 9.standstone 10.fault or geological boundary 11.groundwater flow direction 12.groundwater discharge point(spring)
表 1 研究区不同高程气象站气象要素特征值对比表
Table 1. Comparison of characteristic values of meteorological elements in weather stations at different altitude in the study area
站名 高程/m 多年年均气温/ ℃ 多年年均降水量/mm 多年平均蒸发量/mm 多年平均相对湿度/% 云杉坪 3240.0 5.4 1587.5 966.1 82.0 玉湖植物园 2750.0 9.7 1107.6 1417.7 68.0 丽 江 2415.9 13.2 970.7 1799.3 62.0 大 具 1730.0 17.0 600.0 2177.1 55.0 表 2 研究区植物垂直分带表
Table 2. Vertical zoning of plants in the study area
海拔/m 垂直带/m 自然植被和代表性植物 ≥ 5000 5000 为终年雪线冰雪堆积区 4300 ~5000 4300 ~4500 为季节性雪线,4800 ~5000 为现代雪线凤毛菊、绿绒蒿、流石滩疏生植被 3900 ~4300 冷杉林、红杉林、杜鹃灌丛、蒿草地 3100 ~3900 3900 为林带线铁杉林、云杉林、冷杉林、红杉林、槭树林 2000 ~3100 3100 为夏季云雾线云南松林、高山松、高山栲林 ≤2000 稀树灌丛草坡,山黄麻、黄茅、栌菊木等 表 3 玉龙雪山土壤种类及分布情况
Table 3. Soil species and distribution in Yulong Snow Mountain
土类 亚类 海拔和主要植被类型 燥红土 燥红土 金沙江边2 000 m以下,山黄麻、黄茅等稀树草坡 红壤 褐红壤 2000 ~3000 m, 云南松林、高山松林红壤 黄红壤 暗红壤 黄棕壤 黄棕壤 2200 ~2800 m,高山栲等常绿阔叶林棕壤 棕壤 2700 ~3200 m,铁杉、桦、槭等针阔叶混交林暗棕壤 暗棕壤 3200 ~3800 m, 云杉、冷杉等针叶林草甸暗棕壤 漂灰土 漂灰土 3800 ~4300 m,冷杉、冷杉等针叶林泥炭漂灰土 高山草甸土 高山草甸土 3500 ~4200 m,杜鹃、柳、蒿草、羊茅、马蹄等黄草甸亚高山灌丛草甸土 高山寒漠土 高山寒漠土 4500 ~5000 m,凤毛菊、绿绒蒿、流石滩疏生植被石灰(岩)土 黑色石灰土 不受海拔限制,在石灰岩上发育,
小果垂枝柏林、黄背栎林、矮刺栎灌木丛红色石灰土 沼泽土 腐殖质沼泽土 高中山、亚高山苔草、马蹄黄、大黄等 表 4 研究区三级岩溶地下水系统类型划分及特征一览表
Table 4. Classification and characteristics of the tertiary karst groundwater system in the study area
分级 岩溶类型 岩溶发育特征 地下水特征 植被 备注 泉水高程/m 分水岭高程/m 泉域系统特征 一级 高寒山区岩溶 上部 冻融风化强烈,化学风化弱,岩溶形态少见 3000 ~3200 3600 ~4000 泉水数量多,以表层岩溶泉为主,汇水面积小,地下水埋深浅,以风化裂隙为主要赋存运移空间,沟谷边缘水力坡度陡,流速快;洼地边缘水力坡度较陡,流速
较快发育,以原始森林和次生林为主 代表泉点3个,以简单管引
为主下部 冻融风化较强烈,化学风化较弱,岩溶形态
少见2700 ~2900 3100 ~3500 泉水数量多,以表层岩溶泉为主,汇水面积小,地下水埋深浅,以风化裂隙为主要赋存运移空间,夷平面上水力坡度较缓,流速较慢;斜坡上水力坡度较陡,流速较快 较发育至发育,以次生林和人工林为主 代表泉点3个,以简单管引
为主二级 温带夷平
面岩溶冻融风化和化学风化均较强,小型漏斗、落水洞等垂直岩溶形态较发育 2300 ~2500 3000 ~3300 是研究区较为复杂多变的一级地下水系统,泉水数量多,表层泉和岩溶大泉均较发育,汇水面积小至中等,地下水埋深差异较大,风化裂隙与小规模溶蚀管道共同组成地下水赋存运移空间,夷平面和山坡上水力坡度较陡,流速较快,盆地边缘水力坡度较缓,流速多较缓慢 较发育,以次生林和人工林为主 代表泉点10个,蓄水池、管引结合开发,部分泉口封闭 三级 亚热带峡
谷岩溶补给区小型洼地、漏斗、落水洞等垂直岩溶形态发育;径流区和排泄区以侵蚀为主,岩溶一般发育 1800 ~2000 2800 ~3100 泉水数量较少,以岩溶大泉和地下河为主,汇水面积中等至较大,系统特征最为复杂,地下水深埋,径流途径长,上游裂隙网络与小型管道并存,地下水流态、流速复杂;下游以管道系统为主,水力坡度陡,流速快 中上游较好,下游较差至中等,以人工林、灌木林为主,平缓区域多为耕地 代表泉点3个,开发成景区,泉口可见 表 5 研究区岩溶泉水主要水文特征和碳汇效应结果一览表
Table 5. List of main hydrological characteristics and carbon sink effects of karst spring water in the study area
分级 名称 泉口海拔
/m分水岭
海拔/m汇水面积
/km2泉流量
/L∙s−1水温
/℃HCO$_3^- $
/mg∙L−1ρ(CO2)
/mg∙L−1Cm
/t∙km−2·a−1长观
点一级岩溶
水系统上部 东山下泉 3088 3765 2.02 10.03 10.8 179.59 64.77 32.61 否 东山中泉 3158 3658 1.36 5.82 10.8 166.98 60.22 30.32 否 文海泉 3127 3902 2.38 57.95 10.2 188.09 67.83 34.16 是 下部 吉子下泉 2880 3180 1.80 14.69 12.8 189.55 68.36 33.72 否 吉子上泉 2927 3220 4.20 27.70 12.2 183.41 66.15 32.62 否 文峰寺泉 2721 3468 2.15 31.24 11.3 168.58 60.80 30.61 是 二级岩溶
水系统圣泉 2530 3634 2.98 145.13 13.6 178.13 64.24 31.68 否 南尧泉 2462 2766 1.07 3.90 13.4 246.67 88.96 34.93 否 老巴课泉 2464 2928 1.41 23.52 13.9 176.53 63.66 23.17 是 达瓦泉 2498 2820 1.00 2.72 13.9 244.16 88.06 43.43 否 大莱泉 2396 2980 4.34 20.79 13.9 190.10 68.56 33.81 否 三元泉 2381 2854 2.28 12.62 14.1 208.01 75.02 37.00 否 寿南1泉 2378 3213 3.15 130.00 14.6 227.94 82.21 40.54 否 寿南2泉 2400 2640 0.79 3.68 14.8 221.72 79.96 39.44 否 山庄泉 2371 2860 1.07 10.39 13.6 214.2 77.25 38.10 否 九鼎龙潭 2445 3139 12.55 426.47 15.6 200.06 72.15 35.59 是 三级岩溶
水系统青龙潭 1865 2845 6.67 103.20 18.0 199.65 72.00 35.51 是 三股水泉 1871 3134 371.54 2084.40 17.7 352.98 127.30 64.10 否 石榴泉 2246 2876 6.29 148.18 16.6 224.24 80.87 31.75 是 注:二级地下水系统中泉水因开发利用给测试带来一定影响,水温测试结果可能与实际有一定误差。 表 6 同级系统岩溶泉水风化消耗CO2质量浓度影响因素对比
Table 6. Comparison of influencing factors of CO2 mass concentration consumed by weathering for karst spring water in the same level system
对比泉水名称 风化消耗CO2
质量浓度差/%水力坡度差
/%地下水埋深
对比泉口温度差
/ ℃泉口海拔差
/m运移空间
对比青龙潭与三股水泉 −76.8 731.5 浅 0.3 −6 简单 东山下泉与文海泉 −4.7 35.6 基本相同 0.6 39 基本相同 文峰寺泉与吉子下泉 −12.4 124 深 −1.5 −159 基本相同 大莱泉与寿南2泉 −16.6 62.1 深 −0.8 −4 基本相同 -
[1] 章程, 汪进良, 肖琼. 岩溶碳循环与流域地球化学过程[M]. 北京: 地质出版社, 2021. [2] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2-3): 95-102.LIU Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2-3): 95-102. [3] 袁道先, 蒋忠诚. IGCP 379“岩溶作用与碳循环”在中国的研究进展[J]. 水文地质工程地质, 2000, 49(1): 49-51. [4] 袁道先. “岩溶作用与碳循环”研究进展[J]. 地球科学进展. 1999, 14(5): 425-432.YUAN Daoxian. Progress in the study on karst processes and carbon cycle[J]. Advances in Earth Science, 1999, 14 (5): 425-432. [5] 郭芳, 姜光辉, 康志强. 亚热带典型岩溶水系统的碳汇效应对比研究[J]. 中国岩溶, 2011, 30(4): 403-409.GUO Fang, JIANG Guanghui, KANG Zhiqiang. Study on carbon sink effect in typical sub-tropical karst water system[J]. Carsologica Sinica, 2011, 30(4): 403-409. [6] 裴建国, 章程, 张强, 朱琴. 典型岩溶水系统碳汇通量估算[J]. 岩矿测试, 2012, 31(5): 884-888.PEI Jianguo, ZHANG Cheng, ZHANG Qiang, ZHU Qin. Flux estimation of carbon sink in typical karst water systems[J]. Rock and Mineral Analysis, 2012, 31(5): 884-888. [7] 曹建华, 蒋忠诚, 袁道先, 等. 中国西南岩溶碳循环及全球意义[M]. 北京: 测绘出版社, 2023.CAO Jianhua, JIANG Zhongcheng, YUAN Daoxian, et al. Karst carbon cycle in Southwest China and its global significance[M]. Beijing: Surveying and Mapping Press, 2023. [8] 查小森, 谢世友, 李林立. 短时间尺度下岩溶泉碳汇效应研究: 以重庆金佛山水房泉为例[J]. 地下水, 2015, 37(2): 42-45.ZHA Xiaosen, XIE Shiyou, LI Linli. Study on carbon sink effect in karstic spring of short time scale: A case of the Shuifang spring in Jinfo Mountain, Chongqing[J]. Ground Water, 2015, 37(2): 42-45. [9] 袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M]. 北京: 科学出版社, 2015. [10] 曾艳, 况明生, 李林立, 冯绍国. 重庆金佛山不同高度岩溶发育特征的差异研究[J]. 贵州师范大学学报, 2002, 20(4): 9-12.ZENG Yan, KUANG Mingsheng, LI Linli, FENG Shaoguo. Differences in karst features at different altitudes in Jinfo Mountain in Chongqing[J]. Journal of Guizhou Normal University, 2002, 20(4): 9-12. [11] 吴孔运, 何寻阳, 罗华彪. 重庆金佛山碧潭泉岩溶泉水的物理化学特征[J]. 桂林工学院学报, 2005, 25(4): 423-425WU Kongyun, HE Xunyang, LUO Huabiao. Physical-chemical characteristics of Jifushan karst spring in Chongqing[J]. Journal of Guilin University of Technology, 2005, 25(4): 423-425. [12] 章程, 将忠诚, 何师意, 蒋勇军, 李林立, 王建力. 垂直气候带岩溶动力系统特征研究: 以重庆金佛山国家级自然保护区为例[J]. 地球学报, 2006, 27(5): 510-514.ZHANG Cheng, JIANG Zhongcheng, HE Shiyi, JIANG Yongjun, LI Linli, WANG Jianli. The karst dynamic system of vertical zoned climate region: A case study of the Jinfo Mountain State Nature Reserve in Chongqing[J]. Acta Geoscientica Sinica, 2006, 27(5): 510-514. [13] 杨平恒, 李林立, 蒲俊兵. 垂直气候带表层岩溶泉昼夜动态变化研究[J]. 人民长江, 2007, 38(11): 160-162. [14] 曾成, 赵敏, 杨睿, 刘再华, Vivian Gremaud, Nico Goldscheider. 高寒冰雪覆盖型和湿润亚热带型岩溶水系统碳汇强度对比[J]. 气候变化研究进展, 2011, 7(3): 162-170.ZENG Cheng, ZHAO Min, YANG Rui, LIU Zaihua, VIVIAN Gremaud, NICO Goldscheider. Comparison of karst process-related carbon sink intensity between an alpine glaciated and snow covered karst water system and humid subtropical karst water system[J]. Advances in Climate Change Research, 2011, 7(3): 162-170. [15] 任世川, 刘海峰, 高学震. 云南省丽江盆地水文地质调查报告[R]. 昆明: 云南省地质环境监测院, 2021.REN Shichuan, LIU Haifeng, GAO Xuezhen. Hydrogeological survey report of Lijiang basin in Yunnan Province[R]. Kunming: Yunnan Institute of Geo-Environment Monitoring, 2021. [16] 武贵华, 赵莉, 杨家娣. 云南丽江玉龙雪山冰川国家地质公园规划专项研究报告[R]. 昆明: 云南省地质环境监测院, 2011.WU Guihua, ZHAO Li, YANG Jiadi. Special research report on the planning of the Yulong Snow Mountain Glacier National Geopark in Lijiang, Yunnan[R]. Kunming: Yunnan Institute of Geo-Environment Monitoring, 2011. [17] 蒋忠诚. 广西弄拉白云岩环境元素的岩溶地球化学迁移[J]. 中国岩溶, 1997, 16(4): 304-312.JIANG Zhongcheng. Element migration in karst geochemical processes of the dolomite in Nongla, Guangxi[J]. Carsologica Sinica, 1997, 16(4): 304-312. [18] 章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26): 2174-2180.ZHANG Cheng. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(26): 2174-2180. -
下载: