• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于井间无线电波成像的岩溶发育特征研究

覃瑞东 孙冠军 鲁恺 史存鹏 鹿明轩 李伟 杜理选

覃瑞东,孙冠军,鲁 恺,等. 基于井间无线电波成像的岩溶发育特征研究−以滇中引水工程积福村渡槽岩溶区探查为例[J]. 中国岩溶,2025,44(3):657-668 doi: 10.11932/karst20250312
引用本文: 覃瑞东,孙冠军,鲁 恺,等. 基于井间无线电波成像的岩溶发育特征研究−以滇中引水工程积福村渡槽岩溶区探查为例[J]. 中国岩溶,2025,44(3):657-668 doi: 10.11932/karst20250312
QIN Ruidong, SUN Guanjun, LU Kai, SHI Cunpeng, LU Mingxuan, LI Wei, DU Lixuan. Study on karst development characteristics using cross-hole radio imaging method: A case of karst detection of Jifucun aqueduct in the Central Yunnan Water Diversion Project[J]. CARSOLOGICA SINICA, 2025, 44(3): 657-668. doi: 10.11932/karst20250312
Citation: QIN Ruidong, SUN Guanjun, LU Kai, SHI Cunpeng, LU Mingxuan, LI Wei, DU Lixuan. Study on karst development characteristics using cross-hole radio imaging method: A case of karst detection of Jifucun aqueduct in the Central Yunnan Water Diversion Project[J]. CARSOLOGICA SINICA, 2025, 44(3): 657-668. doi: 10.11932/karst20250312

基于井间无线电波成像的岩溶发育特征研究——以滇中引水工程积福村渡槽岩溶区探查为例

doi: 10.11932/karst20250312
详细信息
    作者简介:

    覃瑞东(1992-),男,工程师,硕士,主要从事水利水电工程地球物理探测方法与应用研究。E-mail: qinruidong@outlook.com

  • 中图分类号: P631.3;P642.25

Study on karst development characteristics using cross-hole radio imaging method: A case of karst detection of Jifucun aqueduct in the Central Yunnan Water Diversion Project

  • 摘要: 滇中引水工程积福村渡槽线路区地下岩溶发育,可能引起地基变形失稳、桩基坑壁渗涌水等工程地质问题,查明渡槽部位的岩溶发育特征意义重大。采用井间无线电波成像技术探测地下岩溶发育状况,使用联合迭代法反演得到地下介质的电磁波吸收系数,并统计解译溶洞的空间分布、形态及连通性等规律。井间无线电波成像结果精细反映了地下岩溶的位置及形态、岩体完整性等重要地质信息,其所揭示的岩溶异常范围与钻探取心及钻孔全景数字成像结果高度一致。研究表明井间无线电波成像是一种有效的岩溶探测方法,能够直观地反映地下岩溶的发育特征及影响范围,从而为渡槽工程的建设提供科学的参考依据。

     

  • 图  1  研究区位置与地层示意图

    Figure  1.  Location and geology of the study area

    图  2  渡槽线路区地质剖面图

    Figure  2.  Geological section of the aqueduct route area

    图  3  井间无线电波成像异常示意图

    Figure  3.  Abnormal data of RIM

    图  4  井间无线电波成像观测系统及成像结果示意图

    Figure  4.  Geometry and imaging results of RIM

    图  5  井间无线电波成像剖面布置图

    Figure  5.  Layout of boreholes and RIM sections

    图  6  剖面6-7~6-14重复观测数据曲线

    Figure  6.  Data for repeated observations of Sections 6–7 to 6–14

    图  7  剖面2-1~2-10井间无线电波成像原始观测数据:(a)发射位于孔深40 m处观测曲线;(b)(近)水平同步观测曲线.

    Figure  7.  RIM data of Sections 2–1 to 2–10: (a) curves of cross-hole observation at the depth of 40 m; (b) curves of (quasi) horizontal synchronous observation

    图  8  剖面2-1~2-10井间无线电波成像成果图(28 MHz)

    Figure  8.  RIM results of Sections 2–1 to 2–10 (28MHz)

    图  9  ZKT2-10钻孔全景数字成像及钻探取心成果

    Figure  9.  Borehole panoramic digital image and core of ZKT2–10

    图  10  岩溶分布统计图

    Figure  10.  Statistical results of karst distribution

    图  11  岩溶垂直厚度直方图

    Figure  11.  Histogram of vertical karst thickness

    表  1  研究区地层岩性

    Table  1.   Stratum lithology of the study area

    代号 厚度/m 岩性特征
    新生界 第四系 冲洪积层 Qpal 9~32 浅棕红色、黄褐色、黑褐色黏土与含砾黏土
    残坡积层 Qedl 4~20 浅棕红色、黄褐色粉质黏土
    中生界 三叠系 松桂组 T3sg >10 灰、灰褐色泥岩,灰黑色砂岩,泥岩夹黑色含炭质泥岩或页岩
    中窝组 T3z 200~300 灰色、深灰色中厚层灰岩夹褐灰色泥质灰岩
    下载: 导出CSV

    表  2  常见介质理论吸收系数[22]

    Table  2.   Theoretical absorption coefficient of common medium[22]

    介质 电阻率/Ω·m 相对介电常数 吸收系数/dB·m−1
    12 MHz 20 MHz 28 MHz
    0.1~100 80 1.82~188.55 1.83~242.99 1.83~286.99
    黏土 1~10 32 17.00~59.15 20.50~75.82 22.72~89.08
    灰岩 100~10000 15 0.04~3.85 0.04~4.06 0.04~4.13
    下载: 导出CSV

    表  3  观测数据质量评价标准[29]

    Table  3.   Evaluation criteria of observed data quality[29]

    级别 均方误差ε/dB 曲线形态
    I ±5 重复性良好
    II ±8 重复性良好
    III ±10 重复性良好
    下载: 导出CSV
  • [1] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015.

    HAN Xingrui. Karst hydrology[M]. Beijing: Science Press, 2015
    [2] 彭浩. 滇东北二叠系阳新灰岩岩溶发育特征及其强度评价探析[D]. 成都: 成都理工大学, 2013.

    PENG Hao. Analysis of development characteristics of karst and intensity evaluation in Yangxin limestone in northeast Yunnan[D]. Chengdu: Chengdu University of Technology, 2013.
    [3] 张强. 金沙江观音岩电站红层钙质砂岩类岩溶发育特征及渗透稳定性研究[D]. 成都: 成都理工大学, 2010.

    ZHANG Qiang. Semi-karst development characteristics and engineering seepage stability of the calcareous sandstone red beds of Guanyinyan Hydropower, Jinsha River[D]. Chengdu: Chengdu University of Technology, 2010.
    [4] 何伟. 贵州盘县机场岩溶发育特征及地基稳定性评价[D]. 成都: 成都理工大学, 2018.

    HE Wei. Research on karst growth law and foundation stability of some airport in Panxian, Guizhou province[D]. Chengdu: Chengdu University of Technology, 2018.
    [5] 杨丽君, 张杰, 杨宁. 栖霞中桥地区岩溶发育特征及分布规律[J]. 西部探矿工程, 2020, 32(9): 41-45. doi: 10.3969/j.issn.1004-5716.2020.09.013

    YANG Lijun, ZHANG Jie, YANG Ning. The karst development characteristics and distribution of the Qixia Zhongqiao area[J]. West-China Exploration Engineering, 2020, 32(9): 41-45. doi: 10.3969/j.issn.1004-5716.2020.09.013
    [6] 冯文凯, 杨星, 周强, 杨强, 刘志刚. 贵州某机场场地岩溶发育特征及成因分析[J]. 科学技术与工程, 2018, 18(4): 227-233. doi: 10.3969/j.issn.1671-1815.2018.04.035

    FENG Wenkai, YANG Xing, ZHOU Qiang, YANG Qiang, LIU Zhigang. Characteristics and genetic analysis of karst development at an airport site in Guizhou[J]. Science Technology and Engineering, 2018, 18(4): 227-233. doi: 10.3969/j.issn.1671-1815.2018.04.035
    [7] 刘强. 基于电测深技术的叙大铁路震东车站岩溶勘察研究[D]. 成都: 西南交通大学, 2018.

    LIU Qiang. Research on the karst exploration of Zhendong Station of Xuda railway based on electrical sounding technology[D]. Chengdu: Southwest Jiaotong University, 2018.
    [8] 覃政教. 地面物探在岩溶地基工程勘察中的应用: 以桂林某花园综合楼为例[J]. 中国岩溶, 2005, 24(4): 338-343. doi: 10.3969/j.issn.1001-4810.2005.04.014

    QIN Zhenjiao. Application of the ground physical exploration in karst foundation engineering prospecting: A case study from a comprehensive building in a garden of Guilin[J]. Carsologica Sinica, 2005, 24(4): 338-343. doi: 10.3969/j.issn.1001-4810.2005.04.014
    [9] 吴亚楠. 高密度电阻率法在莱芜市泉河地区岩溶地质勘查中的应用[J]. 中国岩溶, 2018, 37(4): 617-623. doi: 10.11932/karst20180416

    WU Yanan. Application of the high-density electrical resistivity method to karst geological exploration in Quanhe, Laiwu City[J]. Carsologica Sinica, 2018, 37(4): 617-623. doi: 10.11932/karst20180416
    [10] 高强山, 彭韬, 付磊, 王世杰, 曹乐, 程倩云. 探地雷达技术对表层岩溶带典型剖面组构刻画与界面识别[J]. 中国岩溶, 2019, 38(5): 759-765. doi: 10.11932/karst20190512

    GAO Qiangshan, PENG Tao, FU Lei, WANG Shijie, CAO Le, CHENG Qianyun. Structure description and interface recognition on epikarst typical profiles using GPR technology[J]. Carsologica Sinica, 2019, 38(5): 759-765. doi: 10.11932/karst20190512
    [11] 杜成亮, 甘伏平, 张远海, 赵伟, 梁东辉. 地球物理方法探索隐伏岩溶古河道: 以湖南郴州万华岩为例[J]. 中国岩溶, 2018, 37(4): 624-631. doi: 10.11932/karst20180417

    DU Chengliang, GAN Fuping, ZHANG Yuanhai, ZHAO Wei, LIANG Donghui. Exploratory research on buried karst paleochannels by comprehensive geophysical methods: A case study of Wanhua cave system, Chenzhou, HunanProvince[J]. Carsologica Sinica, 2018, 37(4): 624-631. doi: 10.11932/karst20180417
    [12] 朱庆俊, 李伟, 李凤哲, 孙银行, 李戍. 广西隆安县地下水储水构造的地质-地球物理模型及其地球物理响应特征分析[J]. 中国岩溶, 2011, 30(1): 34-40. doi: 10.3969/j.issn.1001-4810.2011.01.006

    ZHU Qingjun, LI Wei, LI Fengzhe, SUN Yinhang, LI Shu. Analysis on geologic-geophysical model and geophysical response of groundwater reservoir in Longan County, Guangxi[J]. Carsologica Sinica, 2011, 30(1): 34-40. doi: 10.3969/j.issn.1001-4810.2011.01.006
    [13] 汤克轩, 赵楠. 可溶岩地层的地球物理特征及其地质解译[J]. 中国岩溶, 2019, 38(4): 578-583. doi: 10.11932/karst20190416

    TANG Kexuan, ZHAO Nan. Geophysical characteristics and geological interpretation of karst strata[J]. Carsologica Sinica, 2019, 38(4): 578-583. doi: 10.11932/karst20190416
    [14] 梁东辉, 甘伏平, 张伟, 韩凯. 微动HVSR法在岩溶区探测地下河管道和溶洞的有效性研究[J]. 中国岩溶, 2020, 39(1): 95-100. doi: 10.11932/karst20200104

    LIANG Donghui, GAN Fuping, ZHANG Wei, HAN Kai. Study on the effectiveness of the microtremor HVSR method in detecting underground river pipelines and caves in karst areas[J]. Carsologica Sinica, 2020, 39(1): 95-100. doi: 10.11932/karst20200104
    [15] 郭书兰. 无锡地铁某区段岩溶发育特征及围岩稳定性分析[D]. 南京: 南京大学, 2018.

    GUO Shulan. Karst characteristics and surrounding rock stability analysis of a karst development section in Wuxi Metro[D]. Nanjing: Nanjing University, 2018.
    [16] 张华, 张贵, 王宇, 方永林, 代旭升, 王波, 何绕生, 罗为群, 蓝芙宁. 岩溶断陷盆地跨孔CT成像探测岩溶孔隙及赋水状态的实验研究[J]. 中国岩溶, 2020, 39(5): 737-744. doi: 10.11932/karst20200510

    ZHANG Hua, ZHANG Gui, WANG Yu, FANG Yonglin, DAI Xusheng, WANG Bo, HE Raosheng, LUO Weiqun, LAN Funing. Experimental study on the detection of karst pores by cross-hole CT imaging and groundwater occurrence in the Luxi karst fault-depression basin[J]. Carsologica Sinica, 2020, 39(5): 737-744. doi: 10.11932/karst20200510
    [17] 刘四新, 倪建福. 井间电磁法综述[J]. 地球物理学进展, 2020, 35(1): 153-165. doi: 10.6038/pg2020DD0088

    LIU Sixin, NI Jianfu. Review of cross-hole electromagnetic method[J]. Progress in Geophysics, 2020, 35(1): 153-165. doi: 10.6038/pg2020DD0088
    [18] 王建军, 高建华. 电磁波CT技术在某桥墩岩溶勘察中的应用[J]. 资源环境与工程, 2015, 29(4): 464-467.

    WANG Jianjun, GAO Jianhua. Application of electromagnetic wave CT in the investigation og pier[J]. Resources Environment & Engineering, 2015, 29(4): 464-467.
    [19] 王伦文, 何俊荣, 尤岭, 李世平. 滇中引水工程大理Ⅰ段积福村渡槽岩溶处理设计[J]. 水利规划与设计, 2019(12): 151-154.

    WANG Lunwen, HE Junrong, YOU Ling, LI Shiping. The karst treatment design of the aqueduct in Jifu village, Dali section i of the central Yunnan water diversion project[J]. Water Resources Planning and Design, 2019(12): 151-154.
    [20] 王旺盛, 陈长生, 王家祥, 史存鹏, 李银泉. 滇中引水工程香炉山深埋长隧洞主要工程地质问题[J]. 长江科学院院报, 2020, 37(9): 154-159. doi: 10.11988/ckyyb.20200565

    WANG Wangsheng, CHEN Changsheng, WANG Jiaxiang, SHI Cunpeng, LI Yinquan. Major Engineering geological problems of Xianglushan deep-buried long tunnel in central Yunnan water diversion project[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 154-159. doi: 10.11988/ckyyb.20200565
    [21] 叶浩, 周云, 房艳国, 罗文行, 吴海斌, 翁文林, 付兴伟. 鹤庆—剑川地区岩溶发育特征及其控制因素[J]. 华南地震, 2021, 41(2): 19-26.

    YE Hao, ZHOU Yun, FANG Yanguo, LUO Wenxing, WU Haibin, WENG Wenlin, FU Xingwei. The development characteristics and controlling factors of Heqing-Jianchuan karst[J]. South China Journal of Seismology, 2021, 41(2): 19-26.
    [22] 李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005.

    LI Jinming. Geoelectric field and electrical exploration[M]. Beijing: Geology Press, 2005.
    [23] 王薇, 邓小虎, 金聪, 周红伟, 林松. 电磁波CT揭露重大工程岩溶发育特征: 以某地铁岩溶勘察为例[J]. 科学技术与工程, 2020, 20(34): 13977-13982. doi: 10.3969/j.issn.1671-1815.2020.34.004

    WANG Wei, DENG Xiaohu, JIN Cong, ZHOU Hongwei, LIN Song. The characteristics of karst development in major projects revealed by electromagnetic wave computed tomography: A case for karst investigation of a metro[J]. Science Technology and Engineering, 2020, 20(34): 13977-13982. doi: 10.3969/j.issn.1671-1815.2020.34.004
    [24] 欧洋, 高文利, 李洋, 王宇航. 估计辐射参数的井间电磁波层析成像技术[J]. 地球物理学报, 2019, 62(10): 3843-3853. doi: 10.6038/cjg2019M0422

    OU Yang, GAO Wenli, LI Yang, WANG Yuhang. Cross-well electromagnetic imaging method with radiation parameter estimation[J]. Chinese Journal of Geophysics, 2019, 62(10): 3843-3853. doi: 10.6038/cjg2019M0422
    [25] 黄生根, 刘东军, 胡永健. 电磁波CT技术探测溶洞的模拟分析与应用研究[J]. 岩土力学, 2018, 39(S1): 544-550.

    HUANG Shenggen, LIU Dongjun, HU Yongjian. Simulation analysis and application study of electromagnetic wave computed tomography in detecting karst caves[J]. Rock and Soil Mechanics, 2018, 39(S1): 544-550.
    [26] 岳崇旺. 井间电磁波层析成像研究与应用[D]. 长春: 吉林大学, 2007.

    YUE Chongwang. Study on the cross-well electromagnetic tomography and its application[D]. Changchun: Jilin University, 2007.
    [27] 赵威. 电磁波CT几种常用成像方法应用效果对比[J]. 工程地球物理学报, 2019, 16(5): 749-754. doi: 10.3969/j.issn.1672-7940.2019.05.032

    ZHAO Wei. Comparison of application effects of several common electromagnetic wave CT imaging methods[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 749-754. doi: 10.3969/j.issn.1672-7940.2019.05.032
    [28] 武焕平. 井间电磁波CT成像图像重建算法[D]. 长春: 吉林大学, 2021.

    WU Huanping. Image reconstruction algorithm of cross-well electromagnetic wave CT imaging[D]. Changchun: Jilin University, 2021.
    [29] 全国自然资源与国土空间规划标准化技术委员会. 钻孔电磁波法技术规程: DZ/T 0404-2022[S]. 北京: 地质出版社, 2022.

    Natural Resources and Territory Spatial Planning. Technical code for borehole electromagnetic wave method: DZ/T 0404-2022[S]. Beijing: Geology Press, 2022.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  26
  • HTML浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-03
  • 录用日期:  2025-01-17
  • 修回日期:  2024-12-30
  • 网络出版日期:  2025-09-03
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回