• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端降雨条件诱发覆盖型岩溶塌陷成因机理与临界判据研究

潘宗源 舒睿 戴建玲 蒙彦 雷明堂 贾龙 马骁 白冰

潘宗源,舒 睿,戴建玲,等. 极端降雨条件诱发覆盖型岩溶塌陷成因机理与临界判据研究[J]. 中国岩溶,2025,44(3):587-597 doi: 10.11932/karst20250308
引用本文: 潘宗源,舒 睿,戴建玲,等. 极端降雨条件诱发覆盖型岩溶塌陷成因机理与临界判据研究[J]. 中国岩溶,2025,44(3):587-597 doi: 10.11932/karst20250308
PAN Zongyuan, SHU Rui, DAI Jianling, MENG Yan, LEI Mingtang, JIA Long, MA Xiao, BAI Bing. Mechanisms and critical criteria of coverd karst collapses under extreme rainfall conditions[J]. CARSOLOGICA SINICA, 2025, 44(3): 587-597. doi: 10.11932/karst20250308
Citation: PAN Zongyuan, SHU Rui, DAI Jianling, MENG Yan, LEI Mingtang, JIA Long, MA Xiao, BAI Bing. Mechanisms and critical criteria of coverd karst collapses under extreme rainfall conditions[J]. CARSOLOGICA SINICA, 2025, 44(3): 587-597. doi: 10.11932/karst20250308

极端降雨条件诱发覆盖型岩溶塌陷成因机理与临界判据研究

doi: 10.11932/karst20250308
基金项目: 广西自然科学基金资助项目(2023GXNSFAA026432);广西重点研发计划项目(桂科AB23026028);中国地质科学院岩溶地质研究所基本科研业务费项目(2023016,2023017);中国地质科学院基本科研业务费项目(JKYQN202369);中国地质科学院岩溶地质研究所基本科研业务费项目(2023013);中国地质调查局地质调查项目(DD20230441);中国地质科学院岩溶地质研究所基本科研业务费项目(2021003)
详细信息
    作者简介:

    潘宗源(1987-),男,博士研究生,副研究员,主要研究方向为工程地质灾害机理与防治技术。E-mail:65709162@qq.com

    通讯作者:

    戴建玲(1981-),女,博士,高级工程师,主要研究方向为工程地质灾害机理与防治技术。E-mail:147538422@qq.com

  • 中图分类号: P642.25

Mechanisms and critical criteria of coverd karst collapses under extreme rainfall conditions

  • 摘要: 近年来,极端降雨条件诱发岩溶塌陷的问题日益凸显,故亟需开展极端降雨条件下岩溶塌陷形成机理的研究。本文通过室内模型试验,分析了不同降雨条件下覆盖层孔隙水压力、土压力与位移量变化规律,探究了极端降雨条件下岩溶塌陷的形成演化过程、塌陷类型与致塌因素。结果表明:(1)降雨过程覆盖层孔隙水压力、土压力和位移量具较好的协同变化规律,且与岩溶塌陷形成演化具较好的相关性。随着降雨强度和循环次数的增加,孔压与土压亦随之增大;位移量的变化表征着岩溶塌陷的形成过程;(2)极端降雨条件下岩溶塌陷类型可分为蠕变破坏型和压剪断裂型两种类型,前者孔隙水压力与土压力为峰丛起伏形态,波动曲线基底不断升高,深层位移量呈先升后降的趋势,浅层和中层位移量则随降雨持续而逐次递增;后者孔压、土压和位移量呈孤峰型,先是在短期内急剧增大然后再迅速降低;(3)蠕变破坏型岩溶塌陷是软化、饱水增荷与损伤等效应循环与累积的结果,压剪断裂型则是以饱水增荷与损伤为主要致塌动力的塌陷类型;(4)覆盖层厚度与岩溶塌陷临界判据条件呈正相关性,厚度越大覆盖层抗塌性越好。

     

  • 图  1  物理模型试验装置原理图

    Figure  1.  Schematic diagram of the physical model testing devices

    图  2  监测点布设平面图与剖面图

    Figure  2.  Plane and profile map of monitoring points

    图  3  大雨条件下覆盖层孔隙水压力动态变化特征

    Figure  3.  Dynamic variations of pore water pressures in overburden layers under heavy rain conditions

    图  4  暴雨条件下覆盖层孔隙水压力动态变化特征

    Figure  4.  Dynamic variations of pore water pressures in overburden layers under rainstorm conditions

    图  5  大暴雨条件下覆盖层孔隙水压力动态变化特征

    Figure  5.  Dynamic variations of pore water pressures in overburden layers under heavy rainstorm conditions

    图  6  大雨条件下覆盖层土压力动态变化特征

    Figure  6.  Dynamic variations of earth pressure in overburden layers under heavy rain conditions

    图  7  暴雨条件下覆盖层土压力动态变化特征

    Figure  7.  Dynamic variations of earth pressure pressure in overburden layers under rainstorm conditions

    图  8  大暴雨条件下覆盖层土压力动态变化特征

    Figure  8.  Dynamic variations of earth pressure in overburden layers under heavy rainstorm conditions

    图  9  大雨条件下覆盖层土体位移动态变化特征

    Figure  9.  Dynamic variations of displacement in overburden layers under heavy rain conditions

    图  10  暴雨条件下覆盖层土体位移动态变化特征

    Figure  10.  Dynamic variations of displacement in overburden layers under rainstorm conditions

    图  11  大暴雨条件下覆盖层土体位移动态变化特征

    Figure  11.  Dynamic variations of displacement in overburden layers under heavy rainstorm conditions

    表  1  模型试验参数与相似比一览表

    Table  1.   List of model testing parameters and similarity ratios

    试验参数相似比试验参数相似比
    几何尺寸lλl =1∶5重力加速度gλg =1
    降雨强度QλQ =1∶5内摩擦角φλφ=1
    黏聚力cλl =1∶5密度ρλρ=1
    应力σλσ=1∶5应变ελε=1
    下载: 导出CSV

    表  2  岩溶塌陷监测预警临界判据条件

    Table  2.   Critical criteria of monitoring and early warning for karst collapses

    降雨
    条件
    厚度
    /m
    临界孔隙水
    压力/kPa
    临界土压
    力/kPa
    临界位移
    量/μm
    降雨
    次数
    大雨

    0.5 19.1 15.3 928.4 3次
    1 25.25 19.8 908.6
    1.5 29.15 26.5 1046.75
    暴雨

    0.5 18.35 17.3 780.5 2次
    1 25.55 17.75 879.85
    1.5 29.45 20.25 1087.5
    大暴雨

    0.5 17.95 16 589.95 1次
    1 23.55 20.95 770.7
    1.5 30.4 26.05 967.25
    下载: 导出CSV
  • [1] Lei M T, Gao Y L, Jiang X Z, Guan Z D. Mechanism analysis of sinkhole formation at Maohe village, Liuzhou city, Guangxi province, China[J]. Environ Earth Science, 2016(75): 542.
    [2] JIANG Xiaozhen, LEI Mingtang, GAO Yongli. Formation mechanism of large sinkhole collapses in Laibin, Guangxi, China[J]. Environ Earth Sci, 2017(76): 823.
    [3] Zhou Y F, Tham L G, Yan R W M, Xu L.The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geotechnics, 2014(55): 330-341.
    [4] 罗先启, 毕金锋. 地质力学模型试验理论与应用[M]. 上海: 上海交通大学出版社, 2016: 7-27.

    LUO Xianqi, BI Jinfeng. Geomechanics model test theory and application[M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 7-27.
    [5] 雷明堂, 蒋小珍, 李瑜. 唐山市岩溶塌陷模型试验研究[J]. 中国地质灾害与防治学报, 1997(8): 179-186.

    LEI Mingtang, JIANG Xiaozhen, LI Yu. Model experiment of karst collapse in Tangshan[J]. The Chinese Journal of Geological Hazard and Control, 1997(8): 179-186.
    [6] JIANG Fuwei, DAI Jianling, LEI Mingtang, QIN Youqiang, JIANG Xiaozhen, MENG Yan. Experimental study on the critical triggering condition of soil failure in subsidence sink- holes[J]. Environ Earth Science, 2015(74): 693-701.
    [7] 张鑫, 崔可锐, 查甫生. 覆盖型岩溶塌陷临界水位降幅模型试验研究[J]. 科学技术与工程, 2016, 16(12): 195-200.ZHANG Xin, CUI Kerui, ZHA Pusheng. Experiment research of the critical water level fell of covered karst collapse [J]. Science Technology and Engineering, 2016,16(12):195-200. doi: 10.3969/j.issn.1671-1815.2016.12.033
    [8] 陶小虎, 赵坚, WANG Xiaoming, YE Ming, Roger Benito Pacheco Castro. 地下水位变化对透-阻型岩溶塌陷影响的分析[J]. 中国岩溶, 2017, 36(6): 777-785. doi: 10.11932/karst2017y50

    TAO Xiaohu, ZHAO Jian, WANG Xiaoming, YE Ming, Roger Benito Pacheco Castro. Analysis of seepage effect on the formation of sinkhole in unconfined aquifer-aquitard system caused by groundwater changes[J]. Carsologica Sinica, 2017, 36(6): 777-785. doi: 10.11932/karst2017y50
    [9] 吴庆华, 张伟, 刘煜, 崔皓东. 基于物理模型试验的岩溶塌陷定量研究[J]. 长江科学院院报, 2018, 35(3): 52-58. doi: 10.11988/ckyyb.20171079

    WU Qinghua, ZHANG Wei, LIU Yu, CUI Haodong. Quantifying the process of karst collapse by a physical model[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 52-58. doi: 10.11988/ckyyb.20171079
    [10] 张少波, 简文彬, 洪儒宝, 黄鹏, 陈鸿志, 刘奔. 水位波动条件下覆盖型岩溶塌陷试验研究[J]. 工程地质学报, 2019, 27(3): 659-667.

    ZHANG Shaobo, JIAN Wenbin, Hong Rubo, HUANG Peng, CHEN Hongzhi, LIU Ben. Experimental study on collapse of covered karst under water-level fluctuation[J]. Journal of Enginnering Geology, 2019, 27(3): 659-667.
    [11] 郭思源, 苏永华, 刘煌海, 黎诗诚, 尹文杰. 地下水位线倾斜的地面塌陷演化过程试验研究[J]. 铁道科学与工程学报, 2003, 20(5): 1774-1786.

    GUO Siyuan, SU Yonghua, LIU Huanghai, LI Shicheng, YIN Wenjie. Experiments on collapse evolution process of karst stratum with inclined groundwater level[J]. Journal of Railway Science and Engineering, 2003, 20(5): 1774-1786.
    [12] 丁庆忠. 弱透水盖层岩溶塌陷的水—气压力致塌机理[D]. 成都: 成都理工大学, 2016.

    DING Qingzhong. Weakly permeable overburden of water-gas pressure to collapse mechanism of the karst collapse physical model research [D].Chengdu: Chengdu University of Technology, 2016.
    [13] XIAO Xianxuan, Gutiérrez Francisco, Guerrero Jesús . The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models[J]. Engineering Geology, 2020(279): 1-10.
    [14] 马骁, 蒋小珍, 曹细冲, 潘宗源. 岩溶空腔水气压力脉动效应的发现及意义[J]. 中国岩溶, 2019, 38(3): 404-410. doi: 10.11932/karst20190310

    MA Xiao, JIANG Xiaozhen, CAO Xicong, PAN Zongyuan. Discover and significance of water-gas pressure pulsation effect within karst cavity[J]. Carsologica Sinica, 2019, 38(3): 404-410. doi: 10.11932/karst20190310
    [15] SHI Hai, LI Quanming, ZHANG Qinglong, YU Yuzhen, XING Yujian, YU Kun. Mechanism of shallow soil cave-type karst collapse induced by water inrush in underground engineering construction[J].Journal of Performance of Constructed Facilities, 2020, 34(1): 0887.
    [16] 熊启华, 高旭, 涂婧, 王芮琼, 晏鄂川, 李祖春. 负压作用下土洞型岩溶塌陷机理及力学模型研究[J]. 人民长江, 2022, 53(9): 163-168.

    XIONG Qihua, GAO Xu, TU Jing, WANG Ruiqiong, YAN Echuang, LI Zuchun. Mechanism of soil-cave type karst collapse under negative pressure and its mechanical model[J]. Yangtze River, 2022, 53(9): 163-168.
    [17] 张晓宸, 陈学军, 唐灵明, 杨鑫, 班如龙, 宋宇. 水位波动条件下岩溶土洞塌陷的模型试验[J]. 桂林理工大学学报, 2022, 42(3): 593-600.

    ZHANG Xiaochen, CHEN Xuejun, TANG Lingming, YANG Xin, BAN Rulong, SONG Yu. Model test of karst soil cave collapse under water level fluctuation[J]. Journal of Guilin University of Technology, 2022, 42(3): 593-600.
    [18] 洪儒宝, 简文彬, 陈雪珍. 覆盖型岩溶土洞对地下水升降作用的响应及其塌陷演化过程[J]. 工程地质学报, 2023, 31(1): 240-247.

    HONG Rubao, JIAN Wenbin, CHEN Xuezhan. Study on the response of covered karst soil cave to groundwater changes and its collapse evolution process[J]. Journal of Engineering Geology, 2023, 31(1): 240-247.
    [19] 赵颖文, 孔令伟, 郭爱国, 拓勇飞. 广西原状红黏土力学性状与水敏性特征[J]. 岩土力学, 2003, 24(4): 568-573.ZHAO Yingwen, KONG Lingwei, GUO Aiguo, TUO Yongfei. Mechanical behaviors and water-sensitive properties of intact Guangxi laterite [J]. Rock and Soil Mechanics, 2003, 24(4): 568-573. doi: 10.3969/j.issn.1000-7598.2003.04.017
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  19
  • HTML浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-24
  • 网络出版日期:  2025-09-03
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回