• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苔藓植物对川西亚高山区砂岩与碳酸盐岩风化特征的影响

刘晗 蒲婉秋 王潘潘 黄成敏

刘 晗,蒲婉秋,王潘潘,等. 苔藓植物对川西亚高山区砂岩与碳酸盐岩风化特征的影响[J]. 中国岩溶,2025,44(3):488-499 doi: 10.11932/karst20250306
引用本文: 刘 晗,蒲婉秋,王潘潘,等. 苔藓植物对川西亚高山区砂岩与碳酸盐岩风化特征的影响[J]. 中国岩溶,2025,44(3):488-499 doi: 10.11932/karst20250306
LIU Han, PU Wanqiu, WANG Panpan, HUANG Chengmin. Influence of mosses on the weathering features of sandstone and carbonate rocks in the subalpine region of western Sichuan[J]. CARSOLOGICA SINICA, 2025, 44(3): 488-499. doi: 10.11932/karst20250306
Citation: LIU Han, PU Wanqiu, WANG Panpan, HUANG Chengmin. Influence of mosses on the weathering features of sandstone and carbonate rocks in the subalpine region of western Sichuan[J]. CARSOLOGICA SINICA, 2025, 44(3): 488-499. doi: 10.11932/karst20250306

苔藓植物对川西亚高山区砂岩与碳酸盐岩风化特征的影响

doi: 10.11932/karst20250306
基金项目: 国家重点研发计划课题(2017YFC0504902);九寨沟灾后重建景观生态环境恢复研究项目(5132202020000046)
详细信息
    作者简介:

    刘晗(1998-),男,硕士研究生,主要研究方向为环境生态修复。E-mail:1064728749@qq.com

    通讯作者:

    黄成敏(1968-),男,博士,教授,研究方向为环境地学和环境生态修复与管理。E-mail:huangcm@scu.edu.cn

  • 中图分类号: Q948;P512.1

Influence of mosses on the weathering features of sandstone and carbonate rocks in the subalpine region of western Sichuan

  • 摘要: 川西亚高山地区地形破碎、气候寒冷,裸露岩石边坡生态修复困难,探究苔藓生长对岩石风化过程的影响有利于寻找促进生态恢复的途径。文章通过对中国川西亚高山区不同尺度、不同风化条件下的砂岩和碳酸盐岩风化体和基岩性质进行分析,以明确其风化微观特征,并进一步探究苔藓植物生长对岩石风化的影响。砂岩和碳酸盐岩随着风化的进行,矿物晶型遭到破坏,岩体均出现裂隙,出现次生矿物,并伴随着铁氧化物和有机质等物质浸染,随时间增加而加剧,但砂岩在风化早期受到的风化作用比碳酸盐岩更强烈。苔藓生长对岩石风化的影响比较复杂,在风化初期,苔藓的作用不强,随着风化的进行,生物侵蚀作用加剧;苔藓生长在砂岩表面,则在风化初期就会加剧砂岩原本强烈的物理风化,并发生物质成分的转变。总体而言,苔藓植物的生长会加快岩石的风化进程,但在风化初期的影响不明显,若对碳酸盐岩边坡利用苔藓植物进行生态修复,相比砂岩效果更好,在一定时间内能起到保护作用。

     

  • 图  1  川西亚高山区研究样点情况

    a, b.样点分布情况图 c.XY1样地苔藓覆盖的风化砂岩 d.HDZ1样地苔藓覆盖的风化碳酸盐岩表面

    Figure  1.  Conditions of sampling points in the subalpine region of western Sichuan

    a,b.distribution of sampling points c.moss-covered weathered sandstone in Plot XY1 d.moss-covered weathered carbonate rock surface in Plot HDZ1

    图  2  新鲜、无苔藓覆盖、有苔藓覆盖碳酸盐岩表面微形态特征

    a.LBZ1样地石灰岩新鲜基岩,方解石晶形完整,颗粒均一 b.LBZ1样地无苔藓覆盖的石灰岩表面,风化时间2 a,方解石晶形开始不完整,有明显的裂隙和孔洞 c.LBZ1样地有苔藓覆盖的石灰岩表面,风化时间2 a,有较深较长的裂隙,出现铁氧浸染现象 d.ZGX3样地石灰岩新鲜基岩,方解石晶形较完整,成块状 e.ZGX3样地无苔藓覆盖的石灰岩表面,风化时间5 a,表面有机质浸染,可见次生矿物 f.ZGX3有苔藓覆盖的石灰岩表面,风化时间5 a,有明显裂缝,可见较多杂质 g.HDZ1样地白云岩新鲜基岩,白云石晶形较为完整,以粒状或块状为主 h.HDZ1样地无苔藓覆盖的白云岩表面,风化时间27 a,白云石晶形发生改变,可见次生矿物 i.HDZ1样地有苔藓覆盖的白云岩表面,风化时间27 a,白云石变少,可见斜长石、石英,有较多溶蚀孔洞

    Figure  2.  Micro-morphological features of weathered surfaces of fresh, moss-free, and moss-covered carbonate rocks

    a.fresh bedrock of limestone in Plot LBZ1, with intact crystal forms of calcite and uniform grain size b.moss-free limestone surface of Plot LBZ1, weathered for 2 years, showing partial degradation of calcite crystal forms with visible cracks and pores c.moss-covered limestone surface of Plot LBZ1, weathered for 2 years, featuring deeper and longer cracks with iron oxide staining d.fresh bedrock of limestone in Plot ZGX3, with relatively intact calcite crystals in a massive form e.moss-free limestone surface of Plot ZGX3, weathered for 5 years, exhibiting organic matter staining and visible secondary minerals f.moss-covered limestone surface of Plot ZGX3, weathered for 5 years, showing prominent cracks and an increase in impurities g.fresh bedrock of dolomite in Plot HDZ1, characterized by relatively intact dolomite crystals primarily in a granular or block form h.moss-free dolomite surface of Plot HDZ1, weathered for 27 years, displaying altered dolomite crystal forms with visible secondary minerals i.moss-covered dolomite surface of Plot HDZ1, weathered for 27 years, showing a decrease in dolomite crystals with visible plagioclase and quartz, and numerous solution pores.

    图  3  新鲜、无苔藓覆盖、有苔藓覆盖碳酸盐岩风化表面微形态特征

    a.XY1样地砂岩新鲜基岩,晶型完整,结构清晰,呈网状 b.XY1样地无苔藓覆盖的砂岩表面,风化时间2.5 a,晶体粒径变小,杂基变多,有次生矿物,结构不完整 c.XY1样地有苔藓覆盖的砂岩表面,风化时间2.5 a,结构破坏严重,孔隙变多,有大量铁质浸染,片状剥落痕迹明显 d.GEG样地砂岩新鲜基岩,结构清晰紧致,杂质较少,呈层状 e.GEG样地无苔藓覆盖的砂岩表面,风化时间2 a,杂质增多,有机质和铁氧化物填充,结构松散 f.GEG样地有苔藓覆盖的砂岩表面,风化时间2 a,结构破坏严重,孔隙增多,片状破坏痕迹明显

    Figure  3.  Micro-morphological features of weathered surfaces of fresh, moss-free, and moss-covered carbonate rocks

    a.fresh bedrock of sandstone in Plot XY1, exhibiting intact crystal forms and clear, mesh-like structures b. moss-free sandstone surface of Plot XY1, weathered for 2.5 years, showing reduced crystal grain sizes, increased impurities, and the presence of secondary minerals, with an incomplete structure c.moss-covered sandstone surface of Plot XY1, weathered for 2.5 years, displaying significant structural damage, increased porosity, abundant iron staining, and clear signs of flaking d.fresh bedrock of sandstone in Plot GEG, characterized by a clear, compact structure with minimal impurities and a layered appearance e.moss-free sandstone surface of Plot GEG, weathered for 2 years, showing increased impurities with organic matter and iron oxides filling the structure, resulting in a loose texture f.moss-covered sandstone surface of Plot GEG, weathered for 2 years, exhibiting severe structural damage, increased porosity, and prominent signs of flaking.

    图  4  新鲜与苔藓生长碳酸盐岩样品扫描电镜及EDS图

    a, b.LBZ1样地新鲜基岩,结构完整清晰 c, d.LBZ1样地苔藓覆盖风化表面,晶体粒径变小,有絮状杂质,产生孔隙 e, f.HDZ1样地新鲜基岩,结构完整,有断裂痕迹 g, h.HDZ1样地苔藓覆盖风化表面,晶体破坏严重,形状发生改变,杂质增多,孔隙较多。

    Figure  4.  SEM and EDS images of fresh and moss-growth carbonate rock samples

    a,b.fresh bedrock of Plot LBZ1, exhibiting an intact and clear structure c,d.moss-covered weathered surface of Plot LBZ1, characterized by reduced crystal grain size, the presence of flaky impurities, and increased porosity e,f.fresh bedrock of Plot HDZ1, displaying an intact structure with signs of fracturing g,h.moss-covered weathered surface of Plot HDZ1, showing significant crystal degradation, altered shapes, increased impurities, and greater porosity.

    图  5  新鲜和苔藓覆盖风化石灰岩和砂岩XRD衍射图

    a.LBZ1灰岩样品,风化时间2 a样品(LBZ1FH),风化表面与新鲜基岩(LBZ1WFH)成分基本一致 b.JJSB砂岩样品,风化时间3a样品(JJSBFH),风化表面相对于新鲜基岩(JJSBWFH),方解石、斜长石相对含量减少,石英增多 Q.石英 Cal.方解石 Dol.白云石 Pl.斜长石 Chl.绿泥石 Ms.白云母

    Figure  5.  XRD diffraction patterns of fresh and moss-covered weathered limestone and sandstone

    a.the LBZ1 limestone sample, weathered for 2 years (LBZ1FH), showing a composition that is largely consistent with the fresh bedrock (LBZ1WFH) b.the JJSB sandstone sample, weathered for 3 years (JJSBFH), exhibiting a relative decrease in the content of calcite and plagioclase compared to the fresh bedrock (JJSBWFH), while with the increase in amount of quartz Q.quartz Cal.calcite Dol.dolomite Pl.plagioclase Chl.chlorite Ms.Muscovite.

    图  6  砂岩新鲜基岩与苔藓覆盖风化表面扫描电镜及EDS线总谱图

    a, b.XY1样地,新鲜基岩,结构清晰紧致,呈层状 c, d.XY1样地,风化表面,结构破坏严重,有许多片状碎片,可见杂质和次生矿物 e, f.YHSZ1样地,新鲜基岩,晶体颗粒较为完整,呈块状,杂质较少 g, h.YHSZ1样地,风化表面,晶体结构明显变小,结构松散,孔隙增多,杂质增多,可见次生矿物

    Figure  6.  SEM and EDS spectrum of fresh sandstone bedrock and moss-covered weathered surface

    a,b.Plot XY1, fresh bedrock exhibiting a clear and compact structure with distinct layering c,d.Plot XY1, the weathered surface showing significant structural degradation, with numerous flaky fragments and visible impurities along with secondary minerals e,f.Plot YHSZ1, the fresh bedrock featuring relatively intact crystal grains and a blocky appearance with minimal impurities g,h.Plot YHSZ1, the weathered surface revealing a pronounced reduction in crystal structure, a loose texture, increased porosity, and a rise in impurities, along with the presence of secondary minerals.

    表  1  采样点基本情况

    Table  1.   Basic information of sampling points

    采样
    区域
    采样地点/
    编号
    海拔/
    m
    风化时间/
    a
    岩性 样方典型
    苔藓物种
    苔藓盖度/
    %
    年均温度/
    [20]
    年降水量/
    mm[22]
    理县 古尔沟
    (GEG)
    2 215 2 砂岩 长叶提灯藓
    Mnium lycopodioides
    60 11.4 650[23]
    毕棚沟
    (BPG3)
    2 290 49 砂岩 细叶小羽藓
    Haplocladium microphyllum
    90 11.4 650[23]
    宝兴县 夹金山
    (JJSB)
    3 880 3 砂岩 反扭藓
    Timmiella anomala
    30 19.3 1 275[22]
    什邡 蓥华山
    (YHSZ1)
    1 003 1~2 砂岩 细叶小羽藓
    Haplocladium microphyllum
    10 14.9 770[22]
    彭州 小鱼洞镇
    (XY1)
    1 043 2.5 砂岩 拟灰羽藓
    Thuidium glaucinoides
    20 15.9 865[22]
    汶川 萝卜寨
    (LBZ1)
    2 013 2 灰岩 大羽藓
    Thuidium cymbifolium
    50 12.9 525[23]
    萝卜寨
    (LBZ2)
    1 942 9 灰岩 硬叶对齿藓
    Didymodon rigidulus
    30 12.9 525[23]
    宝兴县 泽根村
    (ZGX3)
    2 430 5 灰岩 真藓
    Bryum argenteum
    15 15.3 990[21]
    黄店子沟
    (HDZ1)
    2 353 27 白云岩 细叶真藓
    Bryum capillare
    90 15.3 990[21]
    下载: 导出CSV
  • [1] 黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010: 379.

    HUANG Changyong, XU Jianming. Pedology[M]. Beijing: China Agricultural Publishing House, 2010: 379.
    [2] 朱显谟. 论原始土壤的成土过程[J]. 水土保持研究, 1995, 2(4): 83-89.

    ZHU Xianmo. On the Soil Formation Process of Primitive Soil[J]. Research of Soil and Water Conservation, 1995, 2(4): 83-89.
    [3] MAHER K. The dependence of chemical weathering rates on fluid residence time[J]. Earth and Planetary Science Letters, 2010, 294(1-2): 101-110. doi: 10.1016/j.jpgl.2010.03.010
    [4] Clifford S. Riebe, James W. Kirchner, Robert C. Finkel. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 547-562. doi: 10.1016/j.jpgl.2004.05.019
    [5] Luque A, Cultrone G, Mosch S, Siegesmund S, Sebastian E, Leiss B. Anisotropic behaviour of White Macael marble used in the Alhambra of Granada (Spain) The role of thermohydric expansion in stone durability[J]. Engineering Geology, 2010, 115(3-4): 209-216.
    [6] Rosa De La, McIlroy J P, Warke P A, Smith B J. The effects of lichen cover upon the rate of solutional weathering of limestone[J]. Geomorphology, 2014, 220: 81-92. doi: 10.1016/j.geomorph.2014.05.030
    [7] 张朝晖, 王智慧, 祝安. 黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J]. 中国岩溶, 1996, 15(3): 224-232.

    ZHANG Chaohui, WANG Zhihui, ZHU An. A preliminary study on bryokarst of caves in Huangguoshu area[J]. Carsologica Sinica, 1996, 15(3): 224-232.
    [8] Minerva García-Carmona, Victoria Arcenegui, Fuensanta García-Orenes, Jorge Mataix-Solera. The role of mosses in soil stability, fertility and microbiology six years after a post-fire salvage logging management[J]. Journal of Environmental Management, 2020, 262: 110287.
    [9] 郑云普, 赵建成, 张丙昌, 李琳, 张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(3): 371-378.

    ZHENG Yunpu, ZHAO Jiancheng, ZHANG Bingchang, LI Lin, ZHANG Yuanming. Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chinese Bulletin of Botany, 2009, 44(3): 371-378.
    [10] 许议元. 贵州下寒武统黑色页岩-土壤-苔藓系统重金属和稀土元素的地球化学行为研究[D]. 贵阳: 贵州大学, 2023.

    XU Yiyuan. Study on geochemical behavior of heavy metals and rare earth element in the black shale-soil-moss system from the Lower Cambrian black shale area in Guizhou province, China[D]. Guiyang: Guizhou University, 2023.
    [11] 李胜东. 苔藓植物在桂北石灰岩矿山边坡生态修复中的应用[D]. 桂林: 桂林理工大学, 2023.

    LI Shengdong. Application of bryophytes in the ecological restoration of limestone mine slopes in northern Guilin--Tie Shan quarry in Guilin as an example[D]. Guilin: Guilin University of Technology, 2023.
    [12] 张显强, 刘天雷, 从春蕾. 贵州5种喀斯特石生藓类成土及保土生态功能研究[J]. 中国岩溶, 2018, 37(5): 708-713.

    ZHANG Xianqiang, LIU Tianlei , CONG Chunlei. Study on soil conservation and pedogenic function of five bryophytes in the karst areas of Guizhou Province[J]. Carsologica Sinica, 2018, 37(5): 708-713.
    [13] 申家琛, 张朝晖, 王智慧. 石漠化程度对苔藓植物多样性及其结皮土壤化学性质的影响[J]. 生态学报, 2018, 38(17): 6043-6054.

    SHEN Jiachen;ZHANG Zhaohui;WANG Zhihui. The effects of rocky desertification degree on bryophyte diversity and soil chemical properties of crusts[J]. Acta Ecologica Sinica, 2018, 38(17): 6043-6054.
    [14] Matsubara H. Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition[J]. Engineering Geology, 2021,284: 106044. DOI: 10.1016/j.enggeo. 2021.106044
    [15] Anna Potysz, Wojciech Bartz. Bioweathering of minerals and dissolution assessment by experimental simulations—Implications for sandstone rocks: A review[J]. Construction & building materials, 2022, 316: 125862.
    [16] 潘莎, 王智慧, 张朝晖, 郭坤亮. 贵州省茅台镇砂页岩结皮层藓类植物的生态功能[J]. 生态学杂志, 2011, 30(9): 1930-1934.

    PAN Sha, WANG Zhihui, ZHANG Zhaohui, GUO Kunliang. Ecological functions of sandy shale moss crust in Maotai Town of Guizhou Province, Southwest China[J]. Chinese Journal of Ecology, 2011, 30(9): 1930-1934.
    [17] 付兰, 张朝晖. 贵阳市苔藓植物的生物岩溶溶蚀初探[J]. 贵州师范大学学报(自然科学版), 2010, 28(4): 140-143.

    FU Lan, ZHANG Zhaohui. A primary study on biokarst erosions of bryophytes in Guiyang City[J]. Journal of Guizhou Normal University(Natural Sciences), 2010, 28(4): 140-143.
    [18] 申家琛, 张朝晖, 王慧慧, 黄欢, 王智慧. 苔藓植物对石灰岩的溶蚀作用及环境相关性研究[J]. 中国岩溶, 2018, 37(2): 175-184. doi: 10.11932/karst20180203

    SHEN Jiachen, ZHANG Zhaohui, WANG Huihui, HUANG Huan, WANG Zhihui. Corrosion effects and environmental correlation of bryophytes on limestone in Guiyang karst park[J]. Carsologica Sinica, 2018, 37(2): 175-184. doi: 10.11932/karst20180203
    [19] J Kleinteich, S Golubic, IS Pessi, D Velázquez, J Y Storme, F Darchambeau, A V Borges, P Compère, G Radtke, S J Lee. Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium[J]. Microbial Ecology, 2017, 74(1): 33-53. doi: 10.1007/s00248-017-0937-7
    [20] 游传兵. 岷江上游山地森林—干旱河谷交错带植被与土壤水分分布格局研究[D]. 成都: 四川农业大学, 2009.

    YOU Chuanbing. Research on the Vegetation and Soil Moisture of the Distribution Pattern in Mountain Forests-the Arid Valley of Ecotone in the Upper Reach of Minjiang River[D]. Chengdu: Sichuan Agricultural University, 2009.
    [21] 郭朝霞. 川西亚高山区生物多样性分布格局研究[D].成都: 四川农业大学, 2008.

    GUO Zhaoxia. Study on the distribution patterns of biodiversity in the sub-alpine area of western Sichuan[D]. Chengdu: Sichuan Agricultural University, 2008.
    [22] 傅抱璞. 地形和海拔高度对降水的影响[J]. 地理学报, 1992, 47(4): 302-314. doi: 10.3321/j.issn:0375-5444.1992.04.003

    Fo Baopu. The effects of topography and elevation on precipitation[J]. Acta Geographica Sinica, 1992, 47(4): 302-314. doi: 10.3321/j.issn:0375-5444.1992.04.003
    [23] 张一平, 张昭辉, 何云玲. 岷江上游气候立体分布特征[J]. 山地学报, 2004, 22(2): 179-183. doi: 10.3969/j.issn.1008-2786.2004.02.008

    ZHANG Yiping, ZHANG Zhaohui, HE Yunling. Distribution of Climatic Elements in the Upper Reaches of Minjiang River[J]. Journal of Mountain Research, 2004, 22(2): 179-183. doi: 10.3969/j.issn.1008-2786.2004.02.008
    [24] 陈祖刚, 巴图娜存, 徐芝英, 胡云锋. 基于数码相机的草地植被盖度测量方法对比研究[J]. 草业学报, 2014, 23(6): 20-27. doi: 10.11686/cyxb20140603

    CHEN Zugang, BATU Nacun, XU Zhiying, HU Yunfeng. Measuring grassland vegetation cover using digital camera images[J]. Acta Prataculturae Sinica, 2014, 23(6): 20-27. doi: 10.11686/cyxb20140603
    [25] 王冲, 谢振斌, 郭建波, 陈显丹. 乐山麻浩崖墓石刻风化机理研究[J]. 敦煌研究, 2017(6): 172-181.

    WANG Chong, XIE Zhenbin, GUO Jianbo, CHEN Xiandan. Research on the Weathering Mechanism of Stone Carvings on Leshan Mahao Cliff Tomb[J]. Dunhuang Research, 2017(6): 172-181.
    [26] CHEN Ye, LIAN Bin, YIN Zuoying, YANG Yuan. Weathering of carbonate rocks by biological soil crusts in karst areas[J]. Journal of Earth Science, 2014, 25(4): 662-667. doi: 10.1007/s12583-014-0455-1
    [27] Chigira M, Oyama T, Chigira M. Mechanism and effect of chemical weathering of sedimentary rocks[J]. Engineering geology, 2000, 55(1-2): 3-14. doi: 10.1016/S0013-7952(99)00102-7
    [28] 卜海军, 张宁, 郭宏. 广元千佛崖石窟石刻造像物理风化及其影响因素研究[J]. 中国文化遗产, 2018(5): 34-39.

    BU Haijun, ZHANG Ning, GUO Hong. Study on Physical Weathering and Influencing Factors of Stone Carvings in Guangyuan Qianfoya Grottoes[J]. China Cultural Heritage, 2018(5): 34-39.
    [29] 李建厚. 龙门石窟薄层石灰岩风化状态演化趋势地质特征研究[J]. 石窟寺研究, 2018(第8辑): 345-352.

    LI Jianhou. Study on Geological Character of Thin-layer Limestone Weathering State Evolution Trend of Longmen Grottoes[J]. Studies of the Cave Temples, 2018(第8辑): 345-352.
    [30] 雷雨, 刘欢, 王淑婉, 仉文岗, 刘猛, 蒋思维, 陈卉丽, 林思成. 大足石刻北山佛湾诃利帝母造像风化机理[J]. 土木与环境工程学报(中英文), 2025.47(3):79-90.

    LEI Yu, LIU Huan, WANG Shuwan, ZHANG Wengang, LIU Meng, JIANG Siwei, CHEN Huili, LIN Sicheng. Weathering mechanism of the Hariti Statue in Fowan of the Beishan Rock Carvings at Dazu[J]. Journal of Civil and Environmental Engineering, 2025.47(3):79-90.
    [31] José Nespereira, José A. Blanco, Mariano Yenes, Dolores Pereira. Irregular silica cementation in sandstones and its implication on the usability as building stone[J]. Engineering Geology, 2010, 115(3-4): 167-174.
    [32] 李阳兵, 侯建筠, 谢德体. 中国西南岩溶生态研究进展[J]. 地理科学, 2002, 22(3): 365-370. doi: 10.3969/j.issn.1000-0690.2002.03.019

    LI Yangbing, HOU Jianjun, XIE Deti. The Recent Development of Research on Karst Ecology in Southwest China[J]. Scientia Geographica Sinica, 2002, 22(3): 365-370. doi: 10.3969/j.issn.1000-0690.2002.03.019
    [33] Ip K H , Stuart B, Ray A, Thomas P. ESEM-EDS investigation of the weathering of a heritage Sydney sandstone[J]. Microsc Microanal, 2011, 17(2): 292-295.
    [34] 黄继忠, 宋绍雷, 董海燕, 陈学萍, 彭学义. 藻菌共生体对乐山大佛红砂岩风化影响初探[J]. 文物世界, 2018(3): 72-76.

    HUANG Jizhong, SONG Shaolei, DONG Haiyan, CHEN Xueping, PENG Xueyi. Preliminary Study on the Influence of Algae and Bacteria Symbiotics on the Weathering of Red Sandstone of Leshan Giant Buddha Scenic Area[J]. World of Antiquity, 2018(3): 72-76.
    [35] 李军峰, 王智慧, 张朝晖. 喀斯特石漠化山区苔藓多样性及水土保持研究[J]. 环境科学研究, 2013(7): 759-764.

    LI Junfeng, WANG Zhihui, ZHANG Zhaohui. Bryophyte Diversity and the Effect of Soil Formation along with Water Conservation in Karst Rocky Desertification Region[J]. Research of Environmental Sciences, 2013(7): 759-764.
    [36] Li X R, Wang X P, Li T, Zhang J G. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China[J]. Biology and Fertility of Soils, 2002, 35(3): 147-154.
    [37] 乔宝成. 龙门山地区构造地貌及其水系的研究[D]. 成都: 成都理工大学, 2011.

    QIAO Baocheng. Study on tectonic geomorphology and drainage system of the Longmen mountain area[D]. Chengdu: Chengdu University of Technology, 2011.
    [38] 秦中, 张捷, 彭学艺, 王兴山. 四川乐山大佛风化的初步探讨[J]. 地理研究, 2005(6): 928-934. doi: 10.3321/j.issn:1000-0585.2005.06.012

    QIN Zhong, ZHANG Jie, PENG Xueyi, WANG Xingshan. A study on weathering processes of Leshan Grand Buddha, Sichuan, China[J]. Geographical Research, 2005(6): 928-934. doi: 10.3321/j.issn:1000-0585.2005.06.012
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  22
  • HTML浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-13
  • 录用日期:  2024-10-31
  • 修回日期:  2024-10-12
  • 网络出版日期:  2025-09-03
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回