• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斯洛文尼亚经典岩溶区水文地球化学特征

苗迎 章程 MitjaPrelovsek 肖琼

苗 迎,章 程,MitjaPrelovsek,等. 斯洛文尼亚经典岩溶区水文地球化学特征[J]. 中国岩溶,2025,44(3):510-518 doi: 10.11932/karst20250305
引用本文: 苗 迎,章 程,MitjaPrelovsek,等. 斯洛文尼亚经典岩溶区水文地球化学特征[J]. 中国岩溶,2025,44(3):510-518 doi: 10.11932/karst20250305
MIAO Ying, ZHANG Cheng, Mitja Prelovsek, XIAO Qiong. Hydrogeochemical characteristics of classical karst regions in Slovenia[J]. CARSOLOGICA SINICA, 2025, 44(3): 510-518. doi: 10.11932/karst20250305
Citation: MIAO Ying, ZHANG Cheng, Mitja Prelovsek, XIAO Qiong. Hydrogeochemical characteristics of classical karst regions in Slovenia[J]. CARSOLOGICA SINICA, 2025, 44(3): 510-518. doi: 10.11932/karst20250305

斯洛文尼亚经典岩溶区水文地球化学特征

doi: 10.11932/karst20250305
基金项目: 国家重点研发计划项目(2020YFE0204700);中国地质调查项目(DD20230547)
详细信息
    作者简介:

    苗迎(1987-),女,硕士,助理研究员,主要研究方向为岩溶地下水污染、岩溶水文地质。E-mail:miaoying@mail.cgs.gov.cn

  • 中图分类号: P641.3

Hydrogeochemical characteristics of classical karst regions in Slovenia

  • 摘要: 斯洛文尼亚是“一带一路”沿线上的重要国家,也是岩溶研究的发源地,岩溶地下水是斯洛文尼亚岩溶区居民生活和农业生产的重要水源,面对用水安全、时空分布不平衡、洪涝等诸多问题,查明斯洛文尼亚岩溶地下水情况具有重要意义。通过在斯洛文尼亚波斯托尼亚(Postojna)岩溶流域开展岩溶地质调查与取样,结合水化学和同位素分析方法进行初步分析研究。结果表明:①斯洛文尼亚岩溶地下水水质良好,地下水基本处于天然状态,水温、pH、电导率以及阴阳离子等指标均常年稳定在固定值范围内,偶有波动也多受自然环境变化的影响,较少受到人类活动的影响。②分析地下水中氢氧同位素特征可知大气降水是研究区岩溶地下水的主要补给来源,受到碳酸盐岩含水层等岩石的风化与溶滤作用影响,地下水为典型的${\rm{HCO}}_3^{-}$-Ca2+型岩溶水。③硝酸盐等常见污染物含量也远低于世界卫生组织规定的饮用水水质安全限值,来源以自然过程形成的土壤氮为主,旱季时部分采样点处地下水有生活污水及畜禽粪便污染。

     

  • 图  1  研究区概况及采样点分布图(改自斯洛文尼亚卢布尔雅那岩溶河流域图)

    Figure  1.  Overview of the study area and distribution of sampling sites (modified from the map of the karst river basin in Ljubljana of Slovenia)

    图  2  研究区地下水氢氧同位素关系

    Figure  2.  δD-δ18O relationship in groundwater of the study area

    图  3  Cl摩尔浓度和${\rm{NO}}_3^{-}$/Cl摩尔比值的关系

    Figure  3.  Relationship between Cl molar concentration and ${\rm{NO}}_3^{-}$/Clmolar ratio

    表  1  斯洛文尼亚Postojna岩溶流域地下水水化学数据

    Table  1.   Hydrochemical data of groundwater in Postojna karst basin, Slovenia

    样品
    编号
    采样时间 采样位置 水点类型 温度 电导率 pH Ca2+ Mg2+ ${\rm{HCO}}_3^{-}$ ${\rm{NO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ Cl
    μs·cm−1 mg·L−1
    W1 2019年11月
    (雨季)
    Losko 坡立谷 泉点 8.5 437 7.42 75.2 13.4 298.9 2.69 2.31 1.1
    W2 泉点 8.7 475 7.20 73.2 18.5 323.3 2.07 1.93 1.8
    W3 泉点 7.3 348 7.42 92.4 13.0 231.8 2.78 1.03 0.7
    W4 Cerknisko 坡立谷 泉点 9.4 507 7.56 87.2 10.1 353.8 2.98 1.93 1.0
    W5 泉点 8.0 398 7.63 68.0 5.0 268.4 2.64 2.18 1.1
    W6 泉点 9.4 451 7.60 72.4 26.2 311.1 2.16 3.21 2.1
    W7 泉点 9.5 509 7.47 72.4 8.9 372.1 3.68 5.27 0.7
    W8 地下河 地下河入口 8.3 395 7.92 60.4 24.2 268.4 2.15 2.70 1.2
    W9 泉点 8.3 392 7.92 66.8 29.0 268.4 2.21 2.57 1.2
    W10 地下河入口 8.4 382 7.78 69.2 10.8 274.5 2.30 2.18 1.0
    W11 Pivka河流域 泉点 9.2 421 7.38 70.0 9.6 305.0 3.14 2.44 3.2
    W12 泉点 10.0 426 7.28 71.2 7.0 286.7 2.51 2.31 2.9
    W13 湖水 8.3 366 7.52 68.8 10.1 250.1 2.88 1.67 1.0
    W14 Planina洞 地下河支流 8.6 389 7.76 83.6 3.1 256.2 2.22 2.06 1.2
    W15 地下河出口 8.8 388 7.80 88.8 1.2 262.3
    AVE 8.7 419 7.58 73.4 11.2 289.0 2.60 2.41 1.4
    SD 0.69 48.7 0.22 7.67 8.54 38.47 0.46 0.96 0.79
    CV 0.08 0.12 0.03 0.10 0.76 0.13 0.18 0.40 0.55
    W1 2023年6月
    (旱季)
    Losko 坡立谷 泉点 8.6 439 8.14 85.9 19.1 250.1 3.60 7.25 3.8
    W4 Cerknisko 坡立谷 泉点 9.5 461 7.59 75.8 31.4 311.1 3.20 4.84 1.4
    W5 泉点 11.5 450 8.05 89.9 18.5 286.7 3.23 5.97 5.8
    W6 泉点 10.8 506 8.24 83.9 32.4 335.5 4.31 3.23 6.5
    W7 泉点 10.3 541 7.76 85.0 37.9 329.4 4.74 30.20 3.9
    W8 地下河系统 地下河入口 16.0 499 8.00 75.3 35.1 317.2 3.18 9.25 10.3
    W10 地下河入口 20.8 363 7.47 78.7 13.1 231.8 1.53 2.68 3.2
    W12 Pivka河流域 泉点 11.7 377 7.98 84.3 7.56 250.1 4.32 6.24 9.5
    W13 湖水 8.6 345 7.65 84.9 5.62 210.5 4.75 2.59 1.6
    W14 Planina洞 地下河支流 9.5 373 8.22 92.4 6.63 244.0 4.25 3.18 3.4
    W15 地下河出口 10.0 336 7.67 78.0 6.88 237.9 4.25 3.74 4.7
    AVE 11.6 426 7.89 84.2 19.5 273.1 3.67 7.20 4.9
    SD 3.68 71.25 0.27 5.68 12.62 44.05 0.95 7.92 2.9
    CV 0.32 0.17 0.03 0.07 0.65 0.16 0.25 1.1 0.59
    注:“—”表示未测出。
    下载: 导出CSV

    表  2  斯洛文尼亚Postojna岩溶流域地下水同位素数据/‰

    Table  2.   Groundwater isotope data of Postojna karst basin, Slovenia

    编号 δ18O-H2O δD-H2O d盈余 δ15N-NO3 δ18O-NO3
    W1 −8.29 −53.54 12.78 −4.72 7.06
    W2 −8.18 −53.52 13.33 −1.90 6.35
    W3 −7.91 −50.08 12.92 −3.97 5.10
    W4 −7.80 −49.83 11.92 −3.91 6.02
    W5 −8.08 −51.34 13.30 −4.16 8.08
    W6 −8.60 −55.47 13.02 −3.06 7.75
    W7 −8.50 −55.08 13.40 −5.26 7.01
    W8 −8.07 −51.54 13.37 −5.07 8.40
    W9 −8.07 −51.16 13.63 −4.37 9.19
    W10 −8.06 −51.11 13.20 −0.95 4.78
    W11 −7.56 −47.01 12.57 0.34 3.86
    W12 −7.00 −41.95 13.78 1.06 4.33
    W13 −7.69 −46.91 14.61 −1.65 4.19
    W14 −8.02 −50.53 13.47 −1.49 4.64
    W15 −7.74 −48.14 14.05 −1.15 4.86
    AVE −7.97 −50.48 13.29 −2.68 6.11
    SD 0.39 3.49 0.63 2.01 1.72
    CV 0.05 0.07 0.05 0.75 0.28
    下载: 导出CSV
  • [1] D Karunanidhi, P Aravinthasamy, M Deepali, T Subramani, Barbara C Bellows, Peiyue Li. Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area(Tiruppur) of Southern India[J]. Environmental Science and Pollution Research, 2021, 28: 18523-18538. doi: 10.1007/s11356-020-10724-0
    [2] 蓝家程. 岩溶地下河系统中多环芳烃的迁移、分配及生态风险研究[D]. 重庆: 西南大学, 2014: 1.

    LAN Jiacheng. Dissertation Submitted to Southwest University for Doctoral Degree in Physical Geography[D]. Chongqing: Southwest University, 2014:1.
    [3] Zhang X, Liu Y, Wang H. Hydrogeochemical characteristics of karst groundwater in Southwest China[J]. Environmental Earth Sciences, 2023, 82(6): 1-12.
    [4] Li J, Zhao P, Chen Y. Influence of deep gorge landforms on karst groundwater chemistry in Guizhou, China[J]. Journal of Hydrology, 2022, 613: 128315. doi: 10.1016/j.jhydrol.2022.128315
    [5] White W. B. Karst hydrogeochemistry: A review of recent research in Europe[J]. Applied Geochemistry, 2021, 123: 104813.
    [6] Zhou X, Han L, Wu J. Heavy metal contamination in karst groundwater from coal mining areas[J]. Environmental Pollution, 2023, 321: 121040.
    [7] Nguyen P, Tran H, Le T. Nitrate contamination in karst aquifers of Southeast Asia[J]. Science of The Total Environment, 2022, 807: 150900. doi: 10.1016/j.scitotenv.2021.150900
    [8] Smith D, Cooper C, Hall J. Urbanization impacts on karst groundwater recharge[J]. Water, 2021, 13(7): 985. doi: 10.3390/w13070985
    [9] Slovenian Enionmernt Agency ARSO. Meteorology of Slovenia-Natioal Meteological Service of Slovenia-Interactive Weather [202-01-2][EB/OL]. http://meteo.arso.gov.si/me/en/app/webmet/.
    [10] Kogovsek B, Jemcov I, Petric M. Advanced application of time series analysis in complex karst aquifers: Acase study of the Unica springs (SW Slovenia)[J]. Journal of Hydrology, 2023, 626: 130147. doi: 10.1016/j.jhydrol.2023.130147
    [11] 章程, 汪进良, 肖琼, 苗迎, Mitja Prelovsek. 斯洛文尼亚典型岩溶区土壤剖面 CO2 冬季动态变化特征[J]. 生态学报, 2022, 42(8): 3288-3299.

    ZHANG Cheng, WANG Jinliang, XIAO Qiong, MIAO Ying, Mitja Prelovsek. Wintertime CO2 changes in a typical karst soil profile in Slovenia[J]. Acta Ecologica Sinica, 2022, 42(8): 3288-3299.
    [12] 章程, 肖琼, 汪进良, 苗迎, Mitja PRELOVSEK, 孙平安, 郭永丽, Martin KNEZ. 斯洛文尼亚岩溶区草地昼夜尺度土壤 CO2 含量与土温滞后效应[J]. 第四纪研究, 2023, 43(2): 381-389.

    ZHANG Cheng, XIAO Qiong, WANG Jinliang, MIAO Ying, Mitja PRELOVSEK, SUN Pingan, GUO Yongli,Martin KNEZ. Diurnal hysteresis between soil CO2 and soil temperature in karst grassland in Slovenia[J]. Quaternary Sciences, 2023, 43(2): 381-389.
    [13] Blatnik M, Frantar P, Kosec D, Gabrovšek F. Measurements of the outflow along the eastern border of planinsko polje, Slovenia[J]. Acta Carsologica, 2017, 46(1): 83-93.
    [14] Blatnik M, Mayaud C, Gabrovsek F. Groundwater dynamics between Planinsko Polje and springs of the Ljubljanica River, Slovenia[J]. Acta Carsologica, 2019, 48(2): 199-226.
    [15] Ravbar N, Petrič M,Kogovšek B, Blatnik M, Mayaud - Proc M. High waters study of a classical Karst polje-an example of the Planinsko Polje, SWSlovenia//Proceedings of the International Symposium KARST 2018[J]. Belgrade: Centre for Karst Hydrogeology, 2018: 417-424.
    [16] 赵幸悦子, 肖攀, 宋文龙, 黎义勇, 刘前进. 赣南红层地区地下水水化学特征及成因分析[J]. 科学技术与工程, 2023, 23(33): 14112-14122.

    ZHAO Xingyuezi, XIAO Pan, SONG Wenlong, LI Yiyong, LIU Qianjin. Hydrochemical characteristics and genetic analysis of groundwater in red-bed area of south Jiangxi Province[J]. Science Technology and Engineering, 2023, 23(33): 14112-14122.
    [17] 黄奇波, 覃小群, 刘朋雨, 刘朋雨, 程瑞瑞, 李腾芳. 柳林泉域岩溶地下水区域演化规律及控制因素[J]. 环境科学, 2019, 40(5): 2132-2142.

    HUANG Qibo, QIN Xiaoqun, LIU Pengyu, LIU Pengyu, CHENG Ruirui, LI Tengfang. Regional evolution law and control factors of karst groundwater in Liulin spring area[J]. Environmental Science, 2019, 40(5): 2132-2142.
    [18] 张陶, 蒲俊兵, 李建鸿, 吴飞红, 袁道先. 漓江干流水体主要离子化学变化特征及影响因素[J]. 广西科学, 2018, 25(5): 532-543.

    ZHANG Tao, PU Junbing, LI Jianhong, WU Feihong, YUAN Daoxian. Chemical characteristics changes of major ion and its influence factors in the main stream of Lijiang River[J]. Guangxi Sciences, 2018, 25(5): 532-543.
    [19] 王修华, 曹建华, 吴夏, 黄芬, 苏悦, 胡晓农. 漓江流域河流水体离子组成特征及来源[J]. 水文, 2019, 39(3): 68-74. doi: 10.3969/j.issn.1000-0852.2019.03.012

    WANG Xiuhua, CAO Jianhua, WU Xia, HUANG Fen, SU Yue, HU Xiaonong. Characteristics and Origin of Major Ions in River Water in the Lijiang River Basin[J]. Journal of China Hydrology, 2019, 39(3): 68-74. doi: 10.3969/j.issn.1000-0852.2019.03.012
    [20] 高建飞, 丁悌平, 罗续荣, 田世洪, 王怀柏, 李明. 黄河水氢、氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 2011, 85(4): 596-602.

    GAO Jianfei, DING Diping, LUO Xurong, TIAN Shihong, WANG Huaibo, LI Ming. δD and δ18O Variations of Water in the Yellow River and Its Environmental Significance[J]. Acta Geologica Sinica, 2011, 85(4): 596-602.
    [21] Batlle-aguilar J, Banks E W, Batelaan O, Kipfer R, Brennwald M S, Cook P G. Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers[J]. Journal of Hydrology, 2017, 546: 150-165. doi: 10.1016/j.jhydrol.2016.12.036
    [22] QIAN Hui, LI Peiyue, WU Jianhua, ZHOU Yahong. Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan plain, Northwest China[J]. Environmental Earth Sciences, 2013, 70(1): 57-70. doi: 10.1007/s12665-012-2103-3
    [23] 廖驾, 朱振华, 彭毅, 韦珊瑚, 罗朝晖, 刘状, 徐强强, 谢亘. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶, 2023, 42(3): 425-435,481.

    LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Chaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis of hydrochemistry and deuterium and oxygen isotope characteristics of karst groundwater innorthwestern Hunan[J]. Carsologica Sinica, 2023, 42(3): 425-435,481.
    [24] Sreedevi P D, Sreekanth P D, Reddy D V. Recharge environment and hydrogeochemical processes of groundwater in a crystalline aquifer in South India[J]. International Journal of Environmental Science and Technology, 2022, 19(6): 4839-4856. doi: 10.1007/s13762-021-03335-w
    [25] 李霞, 陈文芳, 万利勤, 夏飞雪, 张一博, 袁梦丽. 河南嵩县北部基岩山区地下水水化学特征和环境同位素特征分析[J]. 地球学报, 2017, 38(3): 403-412.

    LI Xiao, CHEN Wen Fang, WAN Li Qin, XIA Feixue, ZHANG Yibo, YUAN Mengli. Analysis of hydrochemical characteristics and environmental isotopic characteristics of groundwater inbedrock mountains area in northern Songxian county, Henan Province[J]. Acta Geoscientica Sinica, 2017, 38(3): 403-412.
    [26] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
    [27] Polona Vreča, Tjaša Kanduč,Marko Štrok, Klara Žagar, Matteo Nigro, Michele Barsanti. An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia[J]. Water, 2024, 16: 469. doi: 10.3390/w16030469
    [28] 柳富田. 基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究[D]. 长春: 吉林大学, 2008: 46-47.

    LIU Futian. Research on Groundwater Circulation and Hydrochemical Transport in the Northern Part of Ordos Cretaceous Basin Based on Isotope Technology[D]. Changchun: Jilin University, 2008: 46-47.
    [29] 马健, 黄勇, 冀东, 潘广山, 吴振, 许春萌, 刘明明. 胶州湾北岸不同水体水化学及氢氧同位素特征研究[J]. 科学技术与工程, 2022, 22(32): 14116-14123.

    MA Jian, HUANG Yong, JI Dong, PAN Guangshan, WU Zhen, XU Chunmeng, LIU Mingming. Hydrochemistry and Hydrogen and Oxygen Isotope Characteristics of Different Water Bodies in the North Coast of Jiaozhou Bay[J]. Science Technology and Engineering, 2022, 22(32): 14116-1412.
    [30] 孟令华. 基于水化学和氢氧同位素的泰安城区岩溶地下水补给来源及演化过程[J]. 环境科学, 2024, 45(4): 2096-2106.

    MENG Linghua. Recharge Source and Evolution Process of Karst Groundwater in Tai ' an Urban Area Based on Hydrochemistry and Hydrogen and Oxygen Isotopes[J]. Environmental Science, 2024, 45(4): 2096-2106.
    [31] 夏冰, 徐良才, 高红远. 利用氮氧同位素示踪吉水县地下水中硝酸盐污染源[J]. 资源信息与工程, 2023, 38(4): 99-103,109. doi: 10.3969/j.issn.2095-5391.2023.04.025

    XIA Bing, XU Liangcai, GAO Hongyuan. Tracing nitrate pollution sources in groundwater in Jishui County using nitrogen and oxygen isotopes[J]. Resource Information and Engineering, 2023, 38(4): 99-103,109. doi: 10.3969/j.issn.2095-5391.2023.04.025
    [32] Juan Antonio Torres-Martínez, Abrahan Mora, Jürgen Mahlknecht, Luis W, Daesslé, Pabel A. Cervantes-Avilés, Rogelio Ledesma-Ruiz. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model[J]. Environmental Pollution, 2021, 269.
    [33] WU Peiyan, XIAO Qiong, GUO Yongli, Mitja Prelovšek, YU Qiong, WANG Qigang. Migration, transformation and nitrate source in the Lihu Underground River based on dual stable isotopes of δ15N- ${\rm{NO}}_3^{-}$ and δ18O- ${\rm{NO}}_3^{-}$[J]. Environmental Science and Pollution Research, 2022, 29: 48661-48674. doi: 10.1007/s11356-022-19277-w
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  28
  • HTML浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 录用日期:  2025-05-09
  • 修回日期:  2025-04-09
  • 网络出版日期:  2025-09-03
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回