• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰工业聚集区水化学特征及其污染分析

龚效宇 张重乾 黎伟 谢蔚嵩 朱令 徐磊 叶樑锴 张少剑 王程程 朱彬 安思危 黄代宽

龚效宇,张重乾,黎 伟,等. 锰工业聚集区水化学特征及其污染分析[J]. 中国岩溶,2025,44(3):462-476 doi: 10.11932/karst20250302
引用本文: 龚效宇,张重乾,黎 伟,等. 锰工业聚集区水化学特征及其污染分析[J]. 中国岩溶,2025,44(3):462-476 doi: 10.11932/karst20250302
GONG Xiaoyu, ZHANG Zhongqian, LI Wei, XIE Weisong, ZHU Ling, XU Lei, YE Liangkai, ZHANG Shaojian, WANG Chengcheng, ZHU Bin, AN Siwei, HUANG Daikuan. Analysis of hydrochemistry and pollution characteristics in manganese-related industrial watersheds[J]. CARSOLOGICA SINICA, 2025, 44(3): 462-476. doi: 10.11932/karst20250302
Citation: GONG Xiaoyu, ZHANG Zhongqian, LI Wei, XIE Weisong, ZHU Ling, XU Lei, YE Liangkai, ZHANG Shaojian, WANG Chengcheng, ZHU Bin, AN Siwei, HUANG Daikuan. Analysis of hydrochemistry and pollution characteristics in manganese-related industrial watersheds[J]. CARSOLOGICA SINICA, 2025, 44(3): 462-476. doi: 10.11932/karst20250302

锰工业聚集区水化学特征及其污染分析

doi: 10.11932/karst20250302
基金项目: 贵州省科技计划项目(黔科合基础—ZK【2022】一般238);贵州省科技计划项目(黔科合支撑[2023]一般182);贵州省科技厅环境科技项目(2121-03)
详细信息
    作者简介:

    龚效宇(1994-),女,工程师,硕士研究生,长期从事水文地球化学及水环境污染研究。E-mail:15387497230@163.com

    通讯作者:

    黄代宽(1981-),男,正高级工程师,博士研究生,长期从事环境污染治理。E-mail:63523227@qq.com

  • 中图分类号: X52

Analysis of hydrochemistry and pollution characteristics in manganese-related industrial watersheds

  • 摘要: 文章以地处“锰三角”的松桃河流域为研究对象,分别采集丰水期(5月)和平水期(9月)流域内可能的污染源及污染受体进行水样分析,通过因子分析探究影响松桃河流域地表水水化学特征的控制因素。结果表明:(1)EC和TDS呈现渣库渗滤液>垃圾填埋场渗滤液>“两井”>表层岩溶泉>地表水,Mn浓度总体呈现渣库渗滤液>“两井”>垃圾填埋场渗滤液>地表水>表层岩溶泉;地表水和表层岩溶泉中的氮素主要以${\rm{NO}}_3^{-} $-N的形式存在,“两井”、渣库和垃圾填埋场渗滤液氮素均以NH$_4^{+} $-N为主。地表水中氨氮超标率达到13%,Mn超标率为9.6%。(2)垃圾填埋场水化学类型呈SO4·Cl-Na·K,锰渣库渗滤液水化学类型呈SO4-Mg型,地表水和表层岩溶泉水化学类型呈HCO3-Ca·Mg型,“两井”地下水受到渣库渗滤液的影响,水化学类型向渣库渗滤液的方向演变,呈现出SO4-Mg·Ca型。(3)地表水在丰水期表现出明显的雨季稀释作用,垃圾渗滤液部分指标表现出明显的淋滤作用,其他水体丰平两季水化学指标差异性较小。(4)影响研究区水化学特征的主要因素为地球化学作用、锰工业及生活污染,其中地球化学作用的影响最大,贡献率在53%左右,锰工业及生活污染占39%左右。虽然PCA和PMF分析尚不能准确区分锰工业和生活污染对研究区水环境污染的贡献率,但通过与表层岩溶泉水化学特征的结合比对以及松桃河Mn和氨氮沿程变化,指示地表水仍然受到锰渣库和生活污染,对松桃河流域涉锰工业企业、渣库和生活污染的治理工作仍需继续。

     

  • 图  1  研究区及采样点分布图

    Figure  1.  Distribution of sampling sites

    图  2  Piper三线图

    Figure  2.  Hydrochemistry diagram of Piper

    图  3  垃圾填埋场渗滤液(LJ)及渣库(BTW、HF、XH、LGW)渗滤液水质指标

    Figure  3.  Parameters of water quality (LJ, BTW, HF, XH, and LGW) of the leachate from the landfill and the slag yard

    图  4  地下水主要阴阳离子图(左:阳离子;右:阴离子)

    Figure  4.  Main anion and cation of groundwater (Left: cation; Right: anion)

    图  5  地表水${\rm{NO}}_3^{-}$-N、NH$_4^{+}$-N、Mn浓度图

    Figure  5.  Concentrations of ${\rm{NO}}_3^{-}$-N, NH$_4^{+}$-N, and Mn in surface water

    图  6  地表水主要阳离子浓度图

    Figure  6.  Concentrations of main cation in surface water

    图  7  地表水主要阴离子浓度图

    Figure  7.  Concentrations of main anion in surface water

    图  8  PCA解析的地表水污染源贡献结果

    Figure  8.  Contributions of pollution sources to groundwater based on PCA

    图  9  PMF解析的地表水污染源贡献结果

    Figure  9.  Contributions of pollution sources to groundwater based on PMF

    表  1  采样点基本信息

    Table  1.   Basic information of sampling sites

    序号 名称 概况
    1 地表水 松桃河 共计12个采样点。松桃河是流域内最大的河流,主要受大路河、大坝河、道水河、老卜茨小溪、镇江河以及地下水补给,河床平均高程355 m。
    道水河 共计5个采样点。道水河是松桃河的重要支流,上下游共分布有5个渣库,两家电解锰企业,是受涉锰行业污染较为严重的支流。
    大坝河 共计2个采样点。大坝河上游为九龙湖,下游横穿松桃县城,两岸分布有商铺、集市、饭店等,存在生活垃圾和污水乱扔乱排现象。
    镇江河 共计2个采样点。镇江河流域分布有一个渣库,污染相对较小。
    九龙湖 共计2个采样点。九龙湖受ZK3的影响,湖底靠近ZK3附近的土壤及水体受到污染。
    其他河流 其他采样点共计3个,是松桃河上游三条支流汇入口,未发现受锰行业污染。
    2 表层岩溶泉 表层岩溶泉共计4个,主要分布在松桃河右岸,平均出露高程395 m,经调查与渣库和电解锰企业无直接水力联系。
    3 污染地下水
    (简称“两井”)
    LPC(老卜茨岩溶泉) 岩溶泉出露在老卜茨小溪左岸,出露高程350 m,比附近河床高4 m,与老卜茨小溪汇合后最终排泄至松桃河,已查明受ZK2、ZK4渗滤液的污染。
    WS(文山
    水井)
    文山岩溶系统是道水河流域最为复杂的地下水系统,文山水井是文山岩溶系统地下暗河的出口,出露在道水河右岸,出口高程380 m,最终排泄至道水河。勘查发现文山岩溶系统受周边渣库的污染,其氨氮和锰超标严重。
    4 垃圾填埋
    场渗滤液
    LJ(垃圾填
    埋场)
    占地面积约80 hm2,日产污水量120 m3·d−1,埋填时间>5年,持续有新堆存垃圾(主要为城市生活垃圾),是研究区生活污染的集中体现。填埋场部分位于老卜茨岩溶系统内,渗滤液往下渗漏向老卜茨小溪排泄。
    5 锰渣库
    渗滤液
    BTW(ZK1
    渣库)
    2018年投入使用,堆渣约90万m3,渗滤液收集池混有生活污水和雨水,日收集渗滤液约500 m3·d−1,运行过程中发现渗滤液通过库区底部的岩溶裂隙和管道向道水河排泄。
    HF(ZK2
    渣库)
    2010年建成并投入使用,产生渗滤液约30 m3·d−1,库区地下水位标高363.37~424.35 m,渣库原始地形为冲沟,淋滤液收集池位于冲沟底部。因底部未铺设防渗膜,淋滤液主要垂向向下和沿断层、节理裂隙的侧向渗漏,进入岩溶漏斗中天然发育的垂向溶隙进入岩溶主管道,通过老卜茨水井地下河出口排出地表。
    XH(ZK3
    渣库)
    2014年建成投入使用,目前该库实际堆存锰渣约101万m3,坝高40 m。由于建设需要,其渗滤液收集池由敞开式的3500 m3·d−1变为地埋式的400 m3·d−1(埋藏于九龙湖底),经过勘查发现渣库防渗层、渗滤液收集池和附属管道均出现破坏,导致渗滤液混入九龙湖,对九龙湖造成污染。
    LGW(ZK4
    渣库)
    2004年建成使用,2013年2月堆满,堆渣96万m3,汛期渗滤液产生量为20~50 m3·d−1,枯水期10 m3·d−1以下,渗滤液经裂隙进入断层集中径流带,分别向北污染老卜茨上游暗河和向南污染老卜茨小溪。
    下载: 导出CSV

    表  2  松桃河流域主要水质指标统计

    Table  2.   Statistics of main indexes for water quality in the Songtao River Basin

    时间 样品编号 测试项目
    DO pH EC TDS NH$_4^{+}$-N ${\rm{NO}}_3^{-}$-N ${\rm{SO}}_4^{2-}$ Cl ${\rm{HCO}}_3^{-}$ Ca2+ K+ Mg2+ Na+ Mn
    5月 地表水(n=26)) 7.19 7.69 0.28 0.18 0.44 1.64 32.15 5.02 130.15 35.41 2.00 13.62 4.32 0.46
    表层岩溶泉(n=4) 5.63 7.72 0.48 0.31 0.00 3.82 19.70 4.91 255.25 64.35 1.35 30.03 1.77 0.05
    “两井”(n=2)) 2.40 7.09 1.93 1.25 49.05 13.07 937.50 22.05 220.50 107.55 6.98 142.00 13.60 28.38
    垃圾填埋场(n=1) 2.04 8.04 17.30 11.25 694.68 34.32 5370.00 2740.00 123.00 222.00 1010.00 282.00 1550.00 3.04
    渣库(n=4)) 5.41 6.62 19.63 12.76 967.18 28.60 19573.50 24.25 94.50 227.23 41.68 2196.23 129.43 2434.30
    9月 地表水(n=26)) 7.54 8.21 0.37 0.18 0.45 1.61 37.68 6.45 146.96 44.18 2.18 15.79 6.44 0.54
    表层岩溶泉(n=4) 4.68 7.30 0.59 0.29 0.00 3.09 17.93 5.60 333.25 70.53 2.20 27.58 2.90 0.02
    “两井”(n=2)) 2.08 7.07 2.42 1.25 57.59 23.73 949.00 17.95 205.00 151.50 4.45 156.50 16.30 52.53
    垃圾填埋场(n=1) <LD 8.03 20.77 12.41 699.46 1.10 6640.00 3260.00 1770.00 316.00 1730.00 382.00 2650.00 2.38
    渣库(n=4)) 4.01 6.17 33.71 22.31 2330.68 40.75 45612.50 45.03 83.50 446.25 99.99 9647.75 426.20 8817.78
    注:“<LD”为检出线以下;单位:pH/无量纲,Ec/mS·cm−1,TDS/g·L−1,其他/mg·L−1
    下载: 导出CSV

    表  3  地下部分水质指标参数

    Table  3.   Parameters of groundwater quality

    采样时间 样品类型 样品名称 DO/mg·L−1 pH Ec/mS·cm−1 TDS/g·L−1 NH$_4^{+}$-N /mg·L−1 ${\rm{NO}}_3^{-}$-N /mg·L−1 Mn /mg·L−1
    5月 “两井” LPC 2.96 7.00 2.03 1.32 44.49 7.72 10.41
    WS 1.84 7.18 1.82 1.18 53.60 18.43 46.34
    表层岩溶泉 YGQ 7.05 7.63 0.42 0.27 <LD 3.57 0.15
    ZDG 5.88 7.89 0.50 0.33 0.00 1.03 0.01
    DW 5.09 7.85 0.49 0.32 0.01 1.36 0.01
    PL 4.51 7.49 0.52 0.34 <LD 9.30 0.02
    9月 “两井” LPC 0.38 7.18 2.28 1.17 53.61 7.72 1.06
    WS 3.77 6.96 2.55 1.32 61.56 39.74 104.00
    表层岩溶泉 YGQ 4.28 7.28 0.62 0.30 <DN 1.07 0.07
    ZDG 5.68 7.51 0.54 0.26 <DN 5.17 0.02
    DW 5.84 7.20 0.60 0.29 <DN 1.54 <0.01
    PL 2.93 7.19 0.60 0.29 0.01 4.56 <0.01
    下载: 导出CSV

    表  4  解释的总方差

    Table  4.   Explanation of total variance and variance

    成分初始特征值提取载荷平方和旋转载荷平方和
    总计方差 %累积 %总计方差 %累积 %总计方差 %累积 %
    15.98154.37254.3725.98154.37254.3723.46831.52531.525
    22.00718.24872.622.00718.24872.623.43531.2362.755
    31.49913.62586.2441.49913.62586.2442.20520.04882.803
    40.716.45292.6960.716.45292.6961.0889.89392.696
    50.54.54697.242
    60.1511.37798.619
    70.0730.66399.282
    80.0360.33199.613
    90.0280.25999.872
    100.010.09199.962
    110.0040.038100
    下载: 导出CSV
  • [1] 郭志强, 石青川. “世界第一锰都”整治调查[J]. 中国经济周刊, 2022(22): 50-54. doi: 10.3969/j.issn.1672-7150.2022.22.018

    GUO Zhiqiang, SHI Qingchuang. "World's first manganese capital" renovation survey[J]. China Economic Weekly, 2022(22): 50-54. doi: 10.3969/j.issn.1672-7150.2022.22.018
    [2] He Shichao, Wilson Benjamin P. , Lundstrom, Mari, Liu, Zhihong. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process[J]. Journal of Hazardous Materials, 2021, 402: 123561. doi: 10.1016/j.jhazmat.2020.123561
    [3] 黄海燕, 连宾, 臧淑艳, 丁丽君. 锰矿开采区蔬菜污染分析[J]. 食品科学, 2008, 29(10): 483-486. doi: 10.3321/j.issn:1002-6630.2008.10.114

    HUANG Haiyan, LIAN Bin, ZANG Shuyan, DING Lijun. Analysis on vegetables pollution in manganese mining area[J]. Journal of Food Science, 2008, 29(10): 483-486. doi: 10.3321/j.issn:1002-6630.2008.10.114
    [4] JIANG Linhua, DUAN Ning. Preventing Pollution in Electrolytic Manganese Industries and Establishing Resource[C]. Environmental Double-effect-based Society, 2009, 347-350.
    [5] Peiyue Li, Hui Qian, Ken W F Howard, Jianhua Wu , Xinsheng Lyu. Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China[J]. Environmental monitoring and assessment, 2014, 186: 1385-1398.
    [6] ZG DAN, Y YAO. Wastewater pollution source apportionment of electrolytic manganese industry based on the equivalent pollution load method[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 158-162.
    [7] 谢荣秀, 田大伦, 方晰. 湘潭锰矿废弃地土壤重金属污染及其评价[J]. 中南林学院学报, 2005, 25(2): 38-41.

    XIE Rongxiu, Tian Dalun, Fang Xi. Assessment of pollution of heavy metals on the slag wasteland of Xiangtan manganese mine[J]. Journal of Central South Forestry University, 2005, 25(2): 38-41.
    [8] Xu Longjun, Wang Xingmin, Chen Hongchong, Liu Chenglun. Mn forms and environmental impact of electrolytic manganese residue[J]. Advanced Materials Research, 2011, 183: 570-574.
    [9] 杜兵, 周长波, 曾鸣, 彭晓成, 孟俊丽, 裴倩倩. 回收电解锰渣中的可溶性锰[J]. 化工环保, 2010, 30(6): 526-529. doi: 10.3969/j.issn.1006-1878.2010.06.016

    Du Bing, Zhou Changbo, Zeng Ming, Peng Xiaocheng, Meng Junli, Pei Qianqian. Recovery of soluble manganese from electrolytic manganese residue[J]. Environmental Protection of Chemical Industry, 2010, 30(6): 526-529. doi: 10.3969/j.issn.1006-1878.2010.06.016
    [10] Wang, Jia, Bing Peng, Liyuan Chai, Qiang Zhang, and Qin Liu. Preparation of electrolytic manganese residue−ground granulated blastfurnace slag cement[J]. Powder technology, 2013, 241: 12-18. doi: 10.1016/j.powtec.2013.03.003
    [11] 张强, 彭兵, 柴立元, 王佳, 张金龙, 闵小波. 电解锰渣体系中硫酸钙特性的研究[J]. 矿冶工程, 2010, 30(5): 70-73, 78.

    Zhang Qiang, Peng Bing, Chai Liyuan, Wang Jia, Zhang JinLong, Min XiaoBo. Study on characteristics of calcium sulfate in electrolytic manganese residue[J]. Mining and Metallurgical Engineering, 2010, 30(5): 70-73, 78.
    [12] 张海涛, 石雪芳, 刘亚斌, 许云海, 杨海君. 湘西花垣河花垣镇地段水体污染特征及来源解析[J]. 水土保持研究, 2017, 24(5): 329-336.

    ZHANG Haitao, SHI Xuefang, LIU Yabin, XU Yunhai, YANG Haijun. Characteristics and Source Identification of Water Pollution of Huayuan River in Huayuan Town Section, Western Hu'nan Province[J]. Research of Soil and Water Conservation, 2017, 24(5): 329-336.
    [13] 胡南, 粟银, 秦志峰, 吴彦琼, 郑济芳. 花垣河锰污染及其成因分析[J]. 环境监测管理与技术, 2008(3): 25-27, 37.

    HU Nan, LI Yin, QING Zhifeng, WU Yanqion, ZHENG Jifang. Analysis of the Manganese Pollution and Cause of Formation in the Huayuan River[J]. The Administration and Technique of Environmental Monitoring, 2008(3): 25-27, 37.
    [14] 姜焕伟, 谢辉, 朱苓, 肖建良, 王立. 电解金属锰生产中的废水排放与区域水质污染[J]. 中国锰业, 2004(1): 8-12.

    JIANG Huanwei, XIE Hui, ZHU Ling, XIAO Jianniang, WANG Li. Wastewater Discharge from Electro-manganese and Regional Wate Pollution[J]. China Manganese Industry, 2004(1): 8-12.
    [15] 谢蔚嵩, 黄代宽, 鹿豪杰, 金修齐, 李娟, 秦俊虎. 电解锰产业集聚区河流锰污染演变趋势和时空分布特征[J]. 环境化学, 2022, 41(1): 315-326.

    XIE Weisong, HUANG Daikuan, LU Hanjie, JIN Xiuqi, LI Juan, QIN Junhu. Variation trend and spatio-temporal distribution of river manganese pollution in the cluster area of electrolytic manganese industry[J]. Environmental Chemistry, 2022, 41(1): 315-326.
    [16] 金修齐, 黄代宽, 赵书晗, 刘庆玲, 谢蔚嵩, 秦俊虎. 松桃河流域氨氮和锰污染特征及生态风险评价[J]. 中国环境科学, 2021, 41(1): 385-395.

    JIN Xiuqi, HUANG Daikuan, ZHAO Shuhan, LIU Qingling, XIE Weisong, QIN Junhu. Pollution characteristics and ecological risk assessment of ammonia nitrogen and manganese in Songtao River Basin of Guizhou Province, China[J]. China Environmental Science, 2021, 41(1): 385-395.
    [17] 段江飞. 贵州松桃县某水库锰污染现状及成因分析[J]. 中国煤炭地质, 2022, 34(S1): 20-23, 30.

    DUAN Jiangfei. Analysis on Manganese Pollution Status and Cause of a Reservoir in Songtao County, Guizhou Province[J]. Coal Geology of China, 2022, 34(S1): 20-23, 30.
    [18] 毕博烁. 重庆市嘉源锰渣堆场地下水污染分析及污染物迁移模拟[D]. 郑州: 华北水利水电大学, 2023.

    BI Boshuo. Groundwater pollution analysis and pollutant migration simulation in Jiayuan manganese slag heap in Chongqing[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023.
    [19] 叶操. 水库重金属锰污染特征及原因分析[J]. 陕西水利, 2023, (9): 92-9.

    YE Cao. Characteristics and causes of heavy metal manganese pollution in reservoir[J]. Shaanxi Water Resources, 2023, (9): 92-93.
    [20] 张瑶, 吴明, 潘娅莹, 邹海东, 杨恩波. 松桃县近62年气候变化特征分析[J]. 农业灾害研究, 2019, 9(6): 50-52.

    ZHANG Yao, WU Ming, PAN Yaying, ZOU Haidong, Yang Enbo. Analysis on the Characteristics of Climate Change in Songtao County in the Past 62 Years[J]. Journal of Agricultural Catastrophology, 2019, 9(6): 50-52.
    [21] 孟利, 左锐, 王金生, 杨洁, 滕彦国, 翟远征, 石榕涛. 基于PCA-APCS-MLR的地下水污染源定量解析研究[J]. 中国环境科学, 2017, 37(10): 3773-3786.

    MENG Li, ZUO Rui, WANG Jinsheng, YANG Jie, TENG Yanguo, ZHAI Yuanzheng, SHI Rongtao. Quantitative source apportionment of groundwater pollution based on PCA-APCS-MLR[J]. China Environmental Science, 2017, 37(10): 3773-3786.
    [22] 张胜楠, 孟福军, 尤永军, 王闪. APCS-MLR结合PMF模型的塔里木河上游沉积物重金属源解析与风险评估[J]. 环境化学, 2023, 42(12): 4264-4277.

    ZHANG Shengnan, MENG Fujun, YOU Yongjun, WANG Shan. APCS-MLR combined with PMF model for sediment heavy metal source analysis and risk assessment in the upper Tarim River Basin[J]. Environmental Chemistry, 2023, 42(12): 4264-4277.
    [23] 程思茜. 基于PMF和PCA-APCS-MLR受体模型的地下水污染源定性识别和定量解析[D]. 成都: 西南交通大学, 2021.

    CHEN Siqian. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-ML Rreceptor models[D]. Chengdu: Southwest Jiaotong University, 2021.
    [24] 王瑞久. 三线图解及其水文地质解释[J]. 工程勘察, 1983(6): 6-11.

    WANG Ruijiu. Trilinear diagram and its hydrogeological interpretation[J]. Geotechnical Investigation Surveying, 1983(6): 6-11.
    [25] 程佳豪, 姚天, 胡晓农, 支传顺, 董玉龙, 吴光伟, 赵瑾. 鲁西北平原区浅层地下水质量评价及指标优化 [J]. 水利水电技术(中英文), 2024, 55(4): 137-150.

    CHENG Jiahao, YAO Tian, HU Xiaonong, ZHI Chuanshun, DONG Yulong, WU Guangwei, ZHAO Jin. Quality evaluation and index optimization of shallow groundwater in the Northwest Plain of Shandong Province [J] . Water Resources and Hydropower Engineering, 2024, 55(4):137-150.
    [26] Shu, Jiancheng, Li Bing, Chen Mengjun , Sun Danyang, Wei Liang, Wang Yao , Wang Jianyi . An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material [J]. Chemosphere , 2020 , 253: 126896.
    [27] 刘东, 喻晓, 罗毅, 孙建亭, 江丁酉, 谈正雄. 城市生活垃圾填埋场渗滤液特性分析[J]. 环境科学与技术, 2006(6): 55-57, 118.

    LIU Dong, YU Xiao, LUO Yi, SUN Jianting, JIANG Dingyou, TAN Zhengxiong. Characteristic Analysis of Municipal Solid Waste Landfill Leachate[J]. Enuivonmental science and technology, 2006(6): 55-57, 118.
    [28] 刘再华. 岩溶水文地球化学研究中pH值野外测定的必要性[J]. 中国岩溶, 1990, 9(4): 25-32.

    LIU Zaihua. Necessities of measuring pH in situ in the study of kast hydrogrochemistry[J]. Carsologica Sinica, 1990, 9(4): 25-32.
    [29] Zeng Cheng, Vivian Gremaud, Zeng Haitao, Liu Zaihua, Nico Goldscheider. Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer: implication for the atmospheric CO2 sink under global war-ming[J]. Environmental earth sciences, 2012, 65(8): 2285-2297. doi: 10.1007/s12665-011-1160-3
    [30] Mor Suman, Khaiwal Ravindra, RP Dahiya, A Chandra. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site[J]. Environmental monitoring and assessment, 2006, 118(1-3): 435-456. doi: 10.1007/s10661-006-1505-7
    [31] 徐志伟. 典型城市与农业区地表水与地下水硝态氮来源研究[D]. 长春: 东北师范大学, 2012.

    XU Zhiwei. Sources Identification of Surface Water and Shallow Groundwater Nitrate-N on Typical Urban and Agricultural Regions[D]. Changchun: Northeast Normal University, 2012.
    [32] L Ribbe, P Delgado, E Salgado, WA Flügel. Nitrate pollution of surface water induced by agricultural non-point pollution in the Pocochay watershed, Chile[J]. Desalination, 2008, 226(1-3): 13-20. doi: 10.1016/j.desal.2007.01.232
    [33] Chen Xiaomin, Wo Fei, Chen Can, Fang Kun. Seasonal changes in the concentrations of nitrogen and phosphorus in farmland drainage and groundwater of the Taihu Lake region of China[J]. Environmental monitoring and assessment, 2010, 169(1): 159-168.
    [34] Mian, Ishaq A, Shaheen Begum, Muhammad Riaz, Mike Ridealgh, Colin J. McClean, Malcolm S. Cresser. Spatial and temporal trends in nitrate concentrations in the River Derwent, North Yorkshire, and its need for NVZ status[J]. Science of the Total Environment, 2010, 408(4): 702-712. doi: 10.1016/j.scitotenv.2009.11.020
    [35] 李正兆, 高海鹰, 张奇, 徐力刚. 抚仙湖流域典型农田区地下水硝态氮污染及其影响因素[J]. 农业环境科学学报, 2008(1): 286-290.

    LI Zhengzhao, GAO Haiying, ZHANG Qi, XU Ligang. Nitrate Pollution of Groundwater and the Affecting Factors in Typical Farmlands of Fuxianhu Lake Catchment[J]. Journal of Agro-Environment Science, 2008(1): 286-290.
    [36] 邢光熹, 施书莲, 杜丽娟, 曹亚澄, 孙国庆, 沈光裕, 孙德玲. 苏州地区水体氮污染状况[J]. 土壤学报, 2001(4): 540-546.

    XING Guangxi, SHI Shulian, DU Lijuan, CAO Yachen, SUN Guoqing, SHEN Guangyu, SUN Deling. Situation of nitrogen pollution in water bodies in Suzhou region.[J]. Acta Pedologica Sinica, 2001(4): 540-546.
    [37] 曾成, 何春, 肖时珍, 刘再华, 陈旺光, 何江湖. 湿润亚热带典型白云岩流域的岩溶无机碳汇强度[J]. 地学前缘, 2022, 29(3): 179-188.

    ZENG Cheng, HE Chun, XIAO Shizhen, LIU Zaihua, CHEN Wangguang, HE Jianghu. Carbon flux in a typical dolomite-dominated drainage basin in humid subtropical climate[J]. Earth Science Frontiers, 2022, 29(3): 179-188.
    [38] Xu Jing, Jin Guangqiu, Tang Hongwu, Zhang Pei, Wang Shen, Wang YouGan, Li Ling. Assessing temporal variations of Ammonia Nitrogen concentrations and loads in the Huaihe River Basin in relation to policies on pollution source control[J]. Science of the Total Environment, 2018, 642(15): 1386-1395.
    [39] Ren Kun, Pan Xiaodong, Yuan Daoxian, Zeng Jie, Liang Jiapeng, Peng Cong. Nitrate sources and nitrogen dynamics in a karst aquifer with mixed nitrogen inputs (Southwest China): Revealed by multiple stable isotopic and hydro-chemical proxies[J]. Water Research, 2022, 210(15): 118000.
    [40] Liu Wencai, Qin Dajun, Yang Yong, Guo Gaoxun. Enrichment of Manganese at Low Background Level Groundwater Systems: A Study of Groundwater from Quaternary Porous Aquifers in Changping Region, Beijing, China[J]. Water, 2023, 15(8): 1537. doi: 10.3390/w15081537
    [41] Kousa A, Komulainen H, Hatakka T, Backman B, Hartikainen, S. Variation in groundwater manganese in Finland[J]. Environmental Geochemistry and Health, 2021, 43(3): 1193-1211. doi: 10.1007/s10653-020-00643-x
    [42] Jiang L. Heat treatment parameters of preparing glass-ceramic with electrolytic manganese residue and their properties[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(4): 1737-1744. doi: 10.1007/s10973-019-08935-w
    [43] Wang Yaguang, Gao Shuai, Liu Xiaoming, Tang Binwen, Mukiza Emile, Zhang Na. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits[J]. Journal of hazardous materials, 2019, 378: 120768. doi: 10.1016/j.jhazmat.2019.120768
    [44] 何德军. 水洗电解锰渣制备水泥基系列材料的基础研究[D]. 绵阳: 西南科技大学, 2023.

    HE Dejun. Foundmental Study on Preparation of Cementious Materials by Water-washed Electrolytic Manganese Residue[D]. Mianyang: Southwest University of Science and Technology, 2023.
    [45] 周睿, 吴玲, 簿丝, 李婷婷, 刘方圆, 任何军. 深圳简易垃圾填埋场水土环境污染指标识别[J]. 中国环境科学, 2022, 42(3): 1287-1294.

    ZHOU Rui, WU Ling, BU Si, LI Tingting, LIU Fangyuan, REN Henjun. Pollutant identification of water and soil of uncontrolled landfills in Shenzhen[J]. China Environmental Science, 2022, 42(3): 1287-1294.
    [46] 韩智勇, 许模, 刘国, 程诚. 生活垃圾填埋场地下水污染物识别与质量评价[J]. 中国环境科学, 2015, 35(9): 2843-2852.

    HAN Zhiyong, XU Mo, LIU Guo, CHENG Cheng. Pollutant identification and quality assessment of groundwater near municipal solid waste landfills in China[J]. China Environmental Science, 2015, 35(9): 2843-2852.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  24
  • HTML浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 录用日期:  2024-07-31
  • 修回日期:  2024-03-22
  • 网络出版日期:  2025-09-03
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回