Hydrogeochemical characteristics and circulation model of deep geothermal resources in Tianjin
-
摘要: 文章通过水化学和同位素分析,研究天津市深部热储地热流体水化学特征、水岩相互作用及其形成的水文地球化学过程,以揭示深部地热过程和循环机理,定量评价研究区热储温度、冷水混合比例以及地热流体最大循环深度等,建立天津市深部地热流体循环概念模型。结果表明:(1)天津市地热流体主要来自北部蓟县山区大气降水入渗补给,补给高程443.34~722.7 m;(2)大气降水经由入渗作用及周边深大断裂带,进入南部平原区封闭、半封闭的热储层,在径流过程中与围岩发生充分的溶滤、吸附、碳酸盐再沉淀、阳离子交换、脱碳酸等多重作用,同时地热流体发生冷水混入现象,地热流体初始温度为94.54~160.90 ℃,最大循环深度达
2 383.29 ~4 279.29 m,冷水混合比例介于0.01~0.77之间,混合后热储温度67.06~121.38 ℃,热循环深度为1 828.27 ~3 150.24 m,最终形成了现今高钠离子、高氯离子、高溶解性总固体(TDS)的地热资源特征。Abstract:Geothermal resources, as a pivotal renewable and environmentally benign energy source for advancing green development and establishing a clean energy system, hold immense potential for exploitation in Tianjin. Tianjin is situated in the northern region of the North China Plain, and its geothermal resources are predominantly distributed in the southern plain area, south of the Ninghe–Baodi Fault. These resources encompass porous thermal reservoirs within the Neogene Minghuazhen Formation and the Guantao Formation, as well as bedrock fracture-type thermal reservoirs in the Ordovician, Cambrian, and Mesoproterozoic Wumishan Formation (Jixian System). By integrating hydrochemical and isotope geochemical signatures, this study aims to quantitatively evaluate the mixing proportions of deep geothermal fluids and to systematically elucidate the circulation patterns of deep geothermal reservoirs, thereby providing a theoretical basis for the sustainable development of Tianjin’s geothermal resources. Sampling and analytical testing of geothermal fluids indicated a pH range of 7.08 to 8.43, suggesting a weakly alkaline nature. The TDS ranged from 762.1 to 6,040.4 mg·L−1, averaging at1,768.97 mg·L−1. Along the flow path, the anionic composition of the geothermal fluids exhibited significant shifts, transitioning from ${\rm{HCO}}_3^{-}$ dominance to Cl− and ${\rm{SO}}_4^{2-}$dominance. This transition was accompanied by an increase in TDS. Both porous geothermal reservoirs and bedrock fracture-type geothermal reservoirs displayed distinct spatial zonation in their hydrochemical characteristics. An in-depth analysis using Gibbs plots and ion ratio coefficients demonstrated that water-rock interactions are the key factors influencing the chemical composition of geothermal fluids. Specifically, Cl− and Na+ primarily originate from the dissolution of salt rocks. In contrast, Ca2+ and Mg2+ ions are mainly affected by the dissolution of carbonate minerals. Furthermore, cation exchange processes resulted in an increase in Na+ concentrations and a corresponding decrease in Ca2+ and Mg2+concentrations. Gypsum dissolution also served as a significant source of ${\rm{SO}}_4^{2-}$ in geothermal fluids. The dissolution of gysum induced a common ion effect that promoted the precipitation of CaCO3, further reducing the concentrations of Ca2+ and ${\rm{HCO}}_3^{-}$. Isotopic analysis of hydrogen and oxygen revealed that atmospheric precipitation is the primary source of recharge for geothermal fluids. However, the isotopic drift observed in most geothermal fluids indicated that they did not originate directly from local precipitation. Instead, these fluids underwent deep circulation, with lateral recharge serving as the main mode of replenishment. During circulation, these fluids exchanged oxygen isotopes with the surrounding rocks.Plotting the geothermal fluids on the Na-K-Mg ternary diagram showed that all samples fell within the partially equilibrated and immature fields, indicating that either (i) the fluid–rock system has not reached cationic equilibrium, or (ii) the ascending deep fluids have been diluted by shallow cold water. Consequently, cationic geothermometers are not recommended for estimating reservoir temperatures. Calculations by PHREEQC software showed quartz and chalcedony to be in supersaturation or near saturation, suggesting that SiO2 geothermometry can reliably estimate temperatures. Reservoir temperatures derived from the quartz geothermometer were generally higher than those from the chalcedony geothermometer and exceeded the measured wellhead temperatures. Therefore, we adopted the quartz geothermometer results as representative of the reservoir temperature. The estimated thermal storage temperature range in the study area was between 67.06 °C and 121.38°C. Using the silicon-enthalpy hybrid model, we analyzed deep circulation temperatures and cold water mixing in geothermal fluids. The cold water mixing ratios ranged from 0.01 to 0.77, resulting in estimated deep circulation temperatures of the geothermal fluids between 94.54 °C and 160.90°C. To ascertain the maximum circulation depth of the geothermal fluids, we integrated the reservoir temperatures derived from both the quartz geothermometer and the hybrid model, along with the average geothermal gradient. The quartz geothermometer results indicated that the thermal circulation depth of the middle reservoir ranged approximately from 1,828.27 m to 3,150.24 m. Conversely, the hybrid model calculations revealed a deeper maximum thermal circulation depth for the deep reservoir, ranging from 2,383.28 m to 4,279.28 m. Based on the aforementioned study, we have developed an initial conceptual model for geothermal fluid circulation. This model divides the area along the Ninghe–Baodi Fault, designating the recharge zone mainly in the bedrock-exposed region of Jixian county to the north. Atmospheric precipitation infiltrates through this and adjacent deep faults, entering enclosed and semi-enclosed thermal reservoirs in the southern plain. As the precipitation flows, it is progressively heated by underlying heat sources. Over extended geological periods, the dissolution of calcite and dolomite reaches equilibrium in the groundwater, maintaining a stable HCO3− concentration. Meanwhile, Ca2+ and Mg2+ undergo processes such as cation exchange and adsorption, leading to their gradual reduction. In contrast, highly soluble rock salt results in significant accumulation of Na+ and Cl− during prolonged migration. Consequently, the geothermal fluids exhibit high concentrations of Na+, Cl−, and TDS. Furthermore, the mixing of cold water with the geothermal fluids along their flow path has contributed to the current characteristics of geothermal resources in the study area. This study is of great significance for understanding the genetic mechanisms, occurrence modes, and geochemical evolution patterns of underground thermal water. -
图 8 研究区主要离子关系图:(a) Cl−/Na+;(b)(${\rm{HCO}}_3^{-}$+${\rm{SO}}_4^{2-}$)/(Ca2++Mg2+);(c)${\rm{SO}}_4^{2-}$/Ca2+;(d)${\rm{HCO}}_3^{-}$/Ca2+;(e)${\rm{HCO}}_3^{-}$/${\rm{SO}}_4^{2-}$;(f)(Na+/Ca2+)/(Mg 2+ /Ca2+)
Figure 8. Relationship of major ions in the study area. (a) Cl−/Na+;(b)(${\rm{HCO}}_3^{-}$+${\rm{SO}}_4^{2-}$)/(Ca2++Mg2+);(c)${\rm{SO}}_4^{2-}$/Ca2+;(d)${\rm{HCO}}_3^{-}$/Ca2+;(e)${\rm{HCO}}_3^{-}$/${\rm{SO}}_4^{2-}$;(f)(Na+/Ca2+)/(Mg 2+ /Ca2+)
表 1 研究区地热流体主要离子测试结果一览表
Table 1. List of main ions test results of geothermal fluids in the study area
样品 热储层 K+ Na+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-}$ ${\rm{HCO}}_3^{-}$ SiO2 TDS D 18O mg·L−1 mg·L−1 mg·L−1 mg·L−1 mg·L−1 mg·L−1 mg·L−1 mg·L−1 mg·L−1 ‰ ‰ DB1 地表 30.3 552.0 62.9 68.6 657.0 353.0 408.0 9.7 1930.2 −32.9 −4.4 DB2 地表 31.0 560.0 64.4 69.9 654.0 352.0 408.0 7.5 1937.5 −27.8 −4.0 DS1 第四系 0.7 142.0 8.3 2.4 24.2 8.8 319.0 13.5 359.1 −70.4 −9.0 DS2 第四系 0.8 151.0 7.5 1.5 23.1 12.9 324.0 16.4 375.1 −71.2 −9.3 DS3 第四系 1.0 199.0 6.0 2.5 84.6 27.9 307.0 14.8 496.9 −72.4 −9.6 DR1 Nm 37.7 209.0 18.8 5.9 76.5 56.3 437.0 30.3 642.2 −69.8 −9.3 DR2 Nm 5.16 499.0 14.6 1.9 353.0 248.0 395.0 38.5 1338.9 −72.1 −8.6 DR3 Nm 77.4 416.0 29.2 11.6 385.0 268.0 377.0 68.5 1389.3 −66.7 −8.9 DR4 Nm 77.5 437.0 33.6 12.6 337.0 277.0 489.0 40.2 1429.8 −67.9 −9.0 DR5 Nm 75.8 408.0 33.7 10.8 350.0 303.0 373.0 69.5 1377.1 −67.5 −9.0 DR6 Nm 4.71 369.0 12.4 1.5 263.0 154.0 373.0 41.1 995.6 −68.5 −9.2 DR7 Nm 1.61 240.0 7.9 0.7 142.0 78.8 262.0 32.5 618.7 −71.8 −9.3 DR8 Nm 5.0 476.6 13.7 1.6 250.3 374.3 371.0 37.5 1344.5 / / DR9 Nm 9.1 792.9 55.7 11.0 633.1 798.5 227.0 31.6 2445.4 / / DR10 Nm 28.0 1003.5 294.9 61.3 1043.6 1717.3 165.4 22.0 4253.3 / / DR11 Nm 4.7 715.4 70.7 7.8 351.7 971.0 260.6 28.0 2279.6 / / DR12 Nm 4.0 466 14.2 1.1 329.7 237.4 390.5 31.0 1287.7 / / DR13 Nm 3.1 403.8 11.5 1.1 210.9 241.4 414.9 27.5 1118.8 / / DR14 Ng 1.0 313.0 2.5 0.3 117.0 0.9 549.2 27.4 763.7 −64.0 −8.9 DR15 Ng 1.3 243.6 3.0 0.3 46.1 57.8 457.6 30.6 629.5 −35.1 −6.3 DR16 Ng 11.0 496.3 16.3 2.7 356.3 236.3 509.5 35.2 1408.9 −70.5 −8.6 DR17 Ng 57.6 445.5 28.8 6.2 390.0 240.9 463.8 51.0 1451.9 −72.0 −9.1 DR18 Ng 41.8 454.7 38.0 6.5 390.0 225.3 488.2 44.5 1444.9 / / DR19 Ng 1.4 384.8 4.1 0.5 241.1 0.9 610.2 27.8 980.7 −70.0 −9.4 DR20 Ng 28.1 512.0 28.2 6.3 374.0 252.6 506.5 34.5 1501.0 / / DR21 Ng 4.1 607.9 10.9 0.9 528.2 201.9 482.1 41.5 1648.5 / / DR22 Ng 4.0 610.0 10.7 0.8 531.8 202.6 500.4 39.0 1661.1 / / DR23 Ng 2.4 268.9 3.9 0.3 74.4 82.8 463.8 34.6 705.2 / / DR24 Ng 19.7 498.5 30.9 6.1 372.2 239.7 524.8 30.5 1460.0 −68.0 −9.0 DR25 Ng 3.9 515.6 10.5 0.6 320.8 232.9 518.7 40.5 1402.2 −73.0 −9.2 DR26 Ng 3.8 479.1 9.1 1.0 351.0 220.2 482.1 38.5 1355.8 −72.0 −9.1 DR27 Ng 31.6 465.0 24.9 5.5 356.3 228.2 463.8 39.4 1406.8 / / DR28 Ng 1.5 324.6 4.9 0.3 108.1 124.2 485.1 32.4 844.6 −71.0 −9.4 DR29 Ng 3.6 565.4 12.2 1.0 379.3 272.8 463.8 35.0 1516.2 / / DR30 Ng 3.1 238.4 9.3 3.0 53.2 36.3 506.5 48.5 657.1 / / DR31 Ng 1.9 245.9 3.2 0.4 58.5 14.8 494.3 50.5 634.4 / / DR32 O 77.8 399.9 28.7 8.5 361.6 257.7 396.6 71.5 1404.0 −38.2 −6.7 DR33 O 46.2 810.3 479.4 99.6 828.5 1845.2 247.1 27.0 4259.8 / / DR34 O 42.5 821.5 530.3 92.8 822.8 1933.0 211.7 34.0 4382.8 −66.0 −9.1 DR35 O 51.9 892.2 569.6 114.5 1031.6 2231.4 180.1 0.0 5016.3 / / DR36 O 54.6 451.9 43.0 7.9 382.9 278.0 463.8 48.5 1498.7 −65.0 −12.9 DR37 O 7.2 406.3 14.4 2.3 319.0 89.4 494.3 29.5 1115.3 / / DR38 ∈ 76.0 419.0 33.1 10.4 379.3 268.2 408.8 67.5 1457.9 −72.0 −10.0 DR39 ∈ 61.8 507.8 26.6 9.3 437.1 311.6 370.4 61.0 1600.7 / / DR40 ∈ 56.2 1171.1 470.5 97.7 1397.1 1798.4 205.6 0.0 5124.6 / / DR41 Jxw 111.7 1650.1 367.9 82.8 2217.4 1375.1 195.9 0.0 5942.5 −61.6 −9.6 DR42 Jxw 76.4 424.2 30.3 9.0 375.8 270.2 408.8 68.5 1458.8 −56.4 −8.4 DR43 Jxw 65.4 410.5 35.3 9.1 414.8 286.1 311.2 67.0 1443.8 −71.9 −9.2 DR44 Jxw 73.9 426.4 28.0 10.1 397.0 269.7 369.2 66.5 1456.2 −71.9 −9.3 DR45 Jxw 79.4 397.0 31.9 8.2 358.0 256.6 390.5 71.0 1397.4 −67.2 −9.1 DR46 Jxw 78.9 396.1 41.9 9.0 354.5 258.8 427.1 73.0 1425.8 −60.6 −8.2 DR47 Jxw 69.1 505.9 30.2 11.2 432.8 368.1 360.0 68.0 1665.3 −69.0 −9.4 DR48 Jxw 59.8 594.9 40.4 12.3 522.2 403.5 374.1 51.0 1871.2 −68.0 −9.5 DR49 Jxw 72.0 516.7 30.8 11.3 450.2 355.7 357.0 66.0 1681.2 / / DR50 Jxw 72.2 600.9 39.3 14.5 577.8 355.7 350.9 0.0 1890.4 / / DR51 Jxw 64.3 617.0 43.3 15.9 610.5 392.1 349.6 55.0 1972.9 / / DR52 Jxw 74.2 772.0 90.3 16.8 762.2 607.2 312.4 74.5 2553.4 / / DR53 Jxw 65.8 454.1 31.0 10.9 439.9 262.3 409.4 59.5 1528.2 −65.0 −9.4 DR54 Jxw 61.3 547.7 38.5 11.5 509.8 377.5 379.5 57.0 1793.1 / / DR55 Jxw 65.7 447.8 28.0 11.1 429.3 247.4 422.3 62.5 1503.0 −74.0 −8.7 DR56 Jxw 45.5 508.9 30.3 5.7 428.9 244.9 494.3 63.5 1574.9 −66.0 −8.1 DR57 Jxw 76.7 436.6 24.6 10.9 425.4 281.8 332.6 68.0 1490.3 / / DR58 Jxw 76.8 410.1 28.0 9.1 365.1 263.8 384.4 62.5 1407.6 / / DR59 Jxw 78.5 404.4 28.8 9.1 368.7 271.5 378.3 67.5 1417.7 / / DR60 Jxw 74.5 414.9 28.5 9.0 375.8 266.9 357.0 69.0 1417.1 / / DR61 Jxw 71.1 457.6 33.6 10.6 411.2 288.8 402.7 35.5 1509.8 −68.0 −9.4 DR62 Jxw 69.8 477.2 32.7 12.2 439.6 306.2 399.7 60.5 1598.1 / / 注:“/”表示该指标未测试。 表 2 研究区热储温度估算
Table 2. Temperature estimation of heat storage in the study area
热储层 T石英/ ℃ T玉髓/ ℃ 最小值 最大值 平均值 最小值 最大值 平均值 明化镇组 67.06 117.80 87.92 35.13 89.18 57.15 馆陶组 75.71 102.74 88.70 44.17 72.88 57.91 奥陶系 75.11 119.27 91.63 43.55 90.78 61.12 寒武系 111.32 116.35 113.84 82.14 87.60 84.87 雾迷山组 86.49 121.38 112.41 55.54 93.09 83.35 表 3 焓和SiO2含量与温度关系表
Table 3. Relationship between enthalpy, SiO2 content, and temperature
温度/ ℃ 焓/J·g−1 SiO2/mg·L−1 温度/ ℃ 焓/J·g−1 SiO2/mg·L−1 50 50.0 13.5 200 203.6 265.0 75 75.0 26.0 225 230.9 365.0 100 100.1 48.0 250 259.2 486.0 125 125.1 80.0 275 289.0 614.0 150 151.0 125.0 300 321.0 692.0 175 177.0 185.0 表 4 硅—焓模型计算地热流体循环温度和冷水混合比例结果统计表
Table 4. Statistics of geothermal fluid circulation temperatures and cold water mixing ratios calculated by silicon enthalpy model
热储层 T循环/ ℃ 冷水混合比例 最小值 最大值 平均值 最小值 最大值 平均值 明化镇组 103.18 154.26 120.49 0.40 0.71 0.54 馆陶组 96.82 136.99 117.34 0.41 0.73 0.54 奥陶系 94.54 139.36 120.06 0.01 0.77 0.37 寒武系 126.57 143.52 135.04 0.31 0.43 0.37 雾迷山组 123.18 160.90 135.85 0.25 0.54 0.37 表 5 地热流体不同方法计算温度及深度对比表
Table 5. Comparison of temperatures and depths calculated by different methods for geothermal fluids
样品 储层 T1/℃ T2/℃ T3 /℃ H1/m H2/m H3/m 样品 储层 T1/℃ T2/℃ T3/℃ H1/m H2/m H3/m DR3 Nm 79 117.12 154.26 1510 3028.50 4089.57 DR43 Jxw 91 115.98 139.07 2546 2995.82 3655.57 DR8 Nm 69 88.86 106.33 891 2220.87 2720.14 DR44 Jxw 97 115.60 131.58 2707 2985.08 3441.57 DR12 Nm 55 80.76 103.18 1290 1989.69 2630.14 DR45 Jxw 99 118.91 136.95 2328 3079.68 3595.00 DR14 Ng 49 75.71 99.08 1571 1845.21 2513.00 DR46 Jxw 98 120.34 140.68 2373 3120.31 3701.49 DR15 Ng 63 80.23 96.82 1916 1974.29 2448.43 DR47 Jxw 85 116.72 146.20 2442 3017.13 3859.29 DR16 Ng 63 86.12 107.15 1750 2142.83 2743.57 DR48 Jxw 79 102.74 123.18 2500 2617.48 3201.63 DR17 Ng 79 102.74 123.18 1325 2617.48 3201.57 DR49 Jxw 95 115.22 133.01 1623 2974.28 3482.43 DR18* Ng 71 96.45 120.37 2496 2437.94 3121.29 DR51 Jxw 78 106.31 132.69 1851 2719.58 3473.40 DR20 Ng 51 85.27 121.82 1393 2118.31 3162.71 DR52* Jxw 82 121.38 160.90 3801 3150.24 4279.29 DR24 Ng 48 80.09 114.71 1314 1970.42 2959.57 DR53* Jxw 83 110.10 135.41 3658 2827.99 3551.06 DR32 O 99 119.27 138.24 2760 3089.92 3631.86 DR54* Jxw 79 108.02 135.67 3282 2768.55 3558.43 DR33 O 56 75.11 94.54 1388 1828.27 2383.29 DR55 Jxw 91 112.52 131.13 1673 2896.91 3428.66 DR34 O 43 84.64 139.36 1516 2100.57 3663.86 DR56* Jxw 84 113.30 141.15 3102 2919.34 3714.89 DR36 O 100 100.40 101.59 1312 2550.59 2584.71 DR57 Jxw 93 116.72 138.52 2650 3017.13 3639.86 DR37 O 78.71 126.57 1822 1931.14 3298.43 DR58 Jxw 97 112.52 124.31 2538 2896.91 3233.86 DR38 ∈ 50 116.35 143.52 2200 3006.50 3782.71 DR59 Jxw 96 116.35 134.52 2876 3006.50 3525.57 DR39 ∈ 92 111.32 126.57 2010 2862.77 3298.43 DR60 Jxw 97 117.46 135.91 2176 3038.20 3565.29 DR41* Jxw 84 105.96 123.97 2778 2709.62 3224.14 DR62* Jxw 83 110.92 137.30 3249 2851.25 3605.00 注:T1为出水温度;T2为基于石英温标估算的热储温度;T3为基于硅—焓模型估算的热储温度;H1为地热井成井深度;H2为基于SiO2温标计算的地热流体循环深度;H3为基于硅—焓模型计算的地热流体最大循环深度。 -
[1] 侯福志. 李四光与天津地热会战[J]. 地热能, 2010(6): 23-25.HOU Fuzhi. LI Siguang and Tianjin Geothermal Battle[J]. Geothermal Energy, 2010(6): 23-25. [2] Pastorelli S, Marini L, Hunziker J. Chemistry, isotope values (δD, δ18O, δ34S(SO4)) and temperatures of the water inflows in two Gotthard tunnels, Swiss Alps[J]. Applied Geochemistry, 2002, 16(6): 633-649. [3] Yassine G, Ammar M, Hassen T, Mohamed G, Aissam B. Hydrogeochemical and environmental isotopes study of the northeastern Algerian thermal waters[J]. Environmental Earth Science, 2018, 77(22): 747. doi: 10.1007/s12665-018-7938-9 [4] Jiao T, Zhonghe P, Qi G, Yingchun W, Jie Li, Tianming H, Yanlong K. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74: 92-105. [5] 王云. 滇东南地热流体地球化学特征研究[D]. 北京: 中国地震局地球物理研究所, 2021.WANG Yun. A research on geochemical characteristics of geothermal fluids in southeast Yunnan Province, China [D]. Beijing:Institute of Geophysics, China Earthquake Administration, 2021. [6] 赵子锐, 张薇, 王贵玲, 邢林啸, 张汉雄, 赵佳怡. 冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束[J]. 中国地质, 2025, 52(1): 246-263.ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis [J]. Geology of China, 2025, 52(1):246-263. [7] 张百鸣, 王心义, 林建旺. 天津地热田地热水的同位素特征分析[J]. 西部探矿工程, 2006, 18(3): 85-88. doi: 10.3969/j.issn.1004-5716.2006.03.042ZHANG Baiming, WANG Xinyi, LIN Jianwang. Analysis of isotope characteristics of geothermal water in Tianjin geothermal field[J]. West-China Exploration Engineering, 2006, 18(3): 85-88. doi: 10.3969/j.issn.1004-5716.2006.03.042 [8] 高宝珠, 聂瑞平, 黎雪梅, 穆春一. 环境同位素技术在研究天津地热流体补给和径流中的应用[J]. 地下水, 2009, 31(4): 1-3,134. doi: 10.3969/j.issn.1004-1184.2009.04.002GAO Baozhu, NIE Ruiping, LI Xuemei, MU Chunyi. Application of environmental isotope techniques on studying Tianjin geothermal fluid's supply and flow[J]. Ground Water, 2009, 31(4): 1-3,134. doi: 10.3969/j.issn.1004-1184.2009.04.002 [9] 宋美钰, 刘杰, 秦莉红, 于彦. 天津地热流体水化学特征及同位素分析[J]. 地质调查与研究, 2018, 41(2): 138-144.SONG Meiyu, LIU Jie, QIN Lihong, YU Yan. Analysis on the hydrochemical characteristics and isotope of geothermal fluid in Tianjin[J]. Geological Survey and Research, 2018, 41(2): 138-144. [10] 杨吉龙, 柳富田, 贾志, 袁海帆, 胥勤勉, 胡云壮. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报, 2018, 39(1): 71-78. doi: 10.3975/cagsb.2017.122801YANG Jilong, LIU Futian, JIA Zhi, YUAN Haifan, XU Qinmian, HU Yunzhuang. The hydrochemical and δ2H-δ18O characteristics of two geothermal fields in Niutuozhen of Hebei Province and Tianjin and their environmental significance[J]. Acta Geoscientica Sinica, 2018, 39(1): 71-78. doi: 10.3975/cagsb.2017.122801 [11] 秦莉红, 石晓今, 于彦, 刘杰, 林溦, 康楠. 天津市蓟县系雾迷山组地热流体地球化学特征[J]. 地质找矿论丛, 2019(1): 150-154.QIN Lihong, SHI Xiaojin, YU Yan, LIU Jie, LIN Wei, KANG Nan. Geochemical characteristics of geothermal fluid in Wumishan Formation of Jixian System in Tianjin[J]. Contributions to Geology and Mineral Resources Research, 2019(1): 150-154. [12] 岳冬冬, 李胜涛, 贾小丰, 张秋霞, 冯昭龙, 杨涛. 天津山岭子地热田雾迷山组热储流体水化学特征[J]. 科学技术与工程, 2020, 20(36): 14847-14853. doi: 10.3969/j.issn.1671-1815.2020.36.010YUE Dongdong, LI Shengtao, JIA Xiaofeng, ZHANG Qiuxia, FENG Zhaolong, YANG Tao. Hydrochemical characteristics of heat storage fluid in Wumishan Formation of Shanlingzi geothermal field in Tianjin[J]. Science Technology and Engineering, 2020, 20(36): 14847-14853. doi: 10.3969/j.issn.1671-1815.2020.36.010 [13] 刘燕生. 天津市区域地质志[R]. 天津: 天津市地质矿产局, 1992.LIU Yansheng. Tianjin regional geological records[R]. Tianjin: Tianjin Bureau of Geology, 1992. [14] 赵苏民, 高宝珠, 黎雪梅, 李会娟, 胡燕. 沧东断裂(天津段)特征及导水导热性质分析[J]. 地质调查与研究, 2007, 30(2): 121-127.ZHAO Sumin, GAO Baozhu, LI Xuemei, LI Huijuan, HU Yan. Character and water-temperature conductivity of the Cangdong Fault (Tianjin Segment)[J]. Geological Survey and Research, 2007, 30(2): 121-127. [15] 高昌. 天津市深覆盖地区1: 5万区域地质调查综合物探研究报告[R]. 天津市地质调查研究所, 2003.GAO Chang. Comprehensive geophysical survey report on 1: 50,000 regional geological survey in deep coverage area of Tianjin[R]. Tianjin Geological Survey Research Institute, 2003. [16] 柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22): 3521-3531.LIU Jianrong, SONG Xianfang, YUAN Guofu, SUN Xiaomin, LIU Xin, WANG Shiqin. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin,2009, 54(22): 3521-3531. [17] Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4): 41-50. [18] Sorey M L, Colvard E M. Hydrologic investigations in the Mammoth Corridor, Yellostone National Park and Vicinity, U. S. A[J]. Geothermics, 1997, 26(2): 221-249. doi: 10.1016/S0375-6505(96)00041-7 [19] 胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编( 第三版)[J]. 地球物理学报, 2001, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005HU Shengbiao, HE Lijuan, WANG Jiyang. Compilation of heat flow data in the China continental area (3rd Edition)[J]. Chinese Journal of Geophysics, 2001, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005 [20] 马凤如, 林黎, 王颖萍, 程万庆, 赵苏民. 天津地热资源现状与可持续性开发利用问题[J]. 地质调查与研究, 2006, 29(3): 222-228.MA Fengru, LIN Li, WANG Yingping, CHENG Wanqing, ZHAO Sumin. Discussion on the sustainable exploitation and utilization of geothermal resources in Tianjin[J]. Geological Survey and Research, 2006, 29(3): 222-228. [21] Schoeller H . Qualitative evaluation of groundwater resources (in methods and techniques of groundwater investigation and development)[J]. Water Research, 1967, 33: 44-52. [22] Gat J R, Gonfiautini R. Stable isotope hydrology: Deuterium and oxygen-18 in the water cycle[M]. Vienna: IAEA, 1981, 103-139. [23] Chikita K, Nishi M, Fukuyama R, Hamahara K. Hydrological and chemical budgets in a volcanic caldera lake: Lake Kussharo, Hokkaido, Japan[J]. Journal of Hydrology, 2004, 291(1-2): 91-114. doi: 10.1016/j.jhydrol.2003.12.014 [24] Yokochi Reika, Purtschert Roland, Suda Yoshimitsu,Sturchio Neil C, Sültenfuß Jürgen, Vockenhuber Christof. Chemical and isotopic constraints on hydrological processes in Unzen volcanic geothermal system[J].Journal of Volcanology and Geothermal Research, 2021, 419: 107353. [25] Craig H. Standard for reporting concentration of deuterium and oxygen-18 in natural water[J]. Science, 1961, 133: 1833-1834. doi: 10.1126/science.133.3467.1833 [26] PANG Zhonghe. Isotope geochemistry of geothermal waters in northern China basin: implications on deep fluidmigration[C]//Proceedings of World Geothermal Congress, Kyushu-Tohoku, Japan, 2000:1559-1563. [27] 崔锐, 王学鹏, 冯波, 刘曦遥, 冯守涛, 刘帅. 基于水化学同位素技术的地热储层成因模式对比分析: 以鲁西北埕宁隆起区为例[J]. 中国岩溶, 2023, 42(5): 969-981, 994.CUI Rui, WANG Xuepeng, FENG Bo, LIU Xiyao, FENG Shoutao, LIU Shuai. Comparative analysis of the genesis models of different geothermal reservoirs in Chengning uplift area in northwest Shandong based on hydrochemical isotope technology [J]. Carsologica Sinica, 2023, 42(5): 969-981, 994. [28] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [29] 卢兆群, 孟祥鑫, 亓协全, 朱光骥, 刘凯丽, 尹秀贞. 章丘北部地区地热流体水文地球化学特征及成因[J]. 中国岩溶, 2024, 43(1): 12-24. doi: 10.11932/karst2024y001LU Zhaoqun, MENG Xiangxin, QI Xiequan, ZHU Guangji, LIU Kaili, YIN Xiuzhen. Hydrogeochemical characteristics and genesis of geothermal water in northern Zhangqiu[J]. Carsologica Sinica, 2024, 43(1): 12-24. doi: 10.11932/karst2024y001 [30] Wu Y, Wang Y. X. Geochemical Evolution of Groundwater Salinity at Basin Scale: A Case Study From Datong Basin, Northern China[J]. Environmental Science: Processes&Impact, 2014, 16(6): 1469-1479. [31] 郭钰颖, 吕智超, 王广才, 马栾, 许庆宇, 黄旭娟, 高树志. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探, 2016, 44(6): 101-105. doi: 10.3969/j.issn.1001-1986.2016.06.019GUO Yuying, LV Zhichao, WANG Guangcai, MA Luan, XU Qingyu, HUANG Xujuan, GAO Shuzhi. Hydrogeochemical simulation of groundwater in Eastern Fengfeng mining area[J]. Coal Geology & Exploration, 2016, 44(6): 101-105. doi: 10.3969/j.issn.1001-1986.2016.06.019 [32] Marques J M, Carreira P M, Goff F, Eggenkamp H, Silva M. Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal)[J]. Applied Geochemistry, 2012, 27: 1471-1481. doi: 10.1016/j.apgeochem.2012.03.007 [33] 李生海. 鄂尔多斯白垩系盆地北区地下水水化学演化的同位素示踪[D]. 长春: 吉林大学, 2008.LI Shenghai. Isotopic tracing of hydrogeochemical evolution of groundwater in the northern part of Ordos Cretaceous Basin[D]. Changchun: Jilin University, 2008. [34] 袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉: 中国地质大学(武汉), 2013.YUAN Jianfei. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D].Wuhan: China University of Geosciences(Wuhan), 2013. [35] 周海燕, 周训, 柳春晖, 虞岚, 李娟, 梁永国. 广东省从化温泉热矿水水化学与同位素特征[J]. 自然资源学报, 2008, 23(4): 155-162. doi: 10.11849/zrzyxb.2008.04.018ZHOU Haiyan, ZHOU Xun, LIU Chunhui, YU Lan, LI Juan, LIANG Yongguo. Hydro-chemical and isotopic characteristics of Conghua hot mineral springs in Guangdong[J]. Journal of Natural Resources, 2008, 23(4): 155-162 doi: 10.11849/zrzyxb.2008.04.018 [36] Schoeller H. Qualitative evaluation of groundwater resource: methods and techniques of groundwater investigation and development[J]. Water Research, 1967, 33: 44-52. [37] Yin Z, Luo Q, Wu J, Xu S, Wu J. Identification of the long-term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river Basin[J]. Journal of Hydrology, 2021, 592: 125604. doi: 10.1016/j.jhydrol.2020.125604 [38] Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2276. doi: 10.1016/0016-7037(88)90143-3 [39] Li Qinghua, Zhang Yanpeng, Chen Wen, Yu Shaowen. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China[J]. Hydrogeology Journal, 2018, 26(5): 1513-1526. doi: 10.1007/s10040-018-1756-8 [40] 郭静, 毛绪美, 童晟, 冯亮. 水化学温度计估算粤西沿海深部地热系统热交换温度[J]. 地球科学, 2016, 41(12): 2075-2087. doi: 10.3799/dqkx.2016.144GUO Jing, MAO Xumei, TONG Sheng, FENG Liang. Using hydrochemical geothermometers calculate exchange temperature of deep geothermal system in west coast area of Guangdong Province[J]. Earth Science, 2016, 41(12): 2075-2087. doi: 10.3799/dqkx.2016.144 [41] WANG Xiaocui, ZHOU Xun. Geothermometry and Circulation Behavior of the Hot Springs in Yunlong County of Yunnan in Southwest China[J]. Geofluids, 2019(1): 8432496. [42] 刘明亮, 何曈, 吴启帆, 郭清海. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221-2231.LIU Mingliang, HE Tong, WU Qifan, GUO Qinghai. Hydrogeochemistry of geothermal waters from Xiongan New Area and its indicating significance[J]. Earth Science, 2020, 43(6): 2221-2231. [43] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993.WANG Jiyang, XIONG Liangping, PANG Zhonghe. Low-medium temperature geothermal system of convective type [M]. Beijing : Science Press, 1993. [44] 罗伟, 杨仕江, 彭静, 袁余洋, 李生红, 曾祥建, 张信. 黔北遵义地区地热水化学特征及成因[J]. 中国岩溶, 2024, 43(1): 72-83. doi: 10.11932/karst20240106LUO Wei, YANG Shijiang, PENG Jing, YUAN Yuyang, LI Shenghong, ZENG Xiangjian, ZHANG Xin. Hydrochemical characteristics and genesis of geothermal water in the Zunyi area, north Guizhou[J]. Carsologica Sinica, 2024, 43(1): 72-83. doi: 10.11932/karst20240106 [45] Lu L H, Pang Z H, Kong Y L, Guo Q, Wang Y C. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the tangshan geothermal system near nanjing, china: implications for sustainable development[J]. Hydrogeology Journal, 2018(1): 1-15. [46] Guo Q H, Wang Y X, Liu W O, H and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 2010, 59 (7): 1589- 1597. [47] Guo Q, Pang Z H, Wang Y C, Tian J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 2017, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007 [48] 罗丹, 杨平恒, 王治祥, 冉瑜, 蒋晶, 明晓星. 渝东南断裂型碳酸盐岩地热水的形成特征[J]. 中国岩溶, 2019, 38(5): 670-681. doi: 10.11932/karst20190503LUO Dan, YANG Pingheng, WANG Zhixiang, RAN Yu, JIANG Jing, MING Xiaoxing. Formation characteristics of carbonate thermal water controlled by fault in southeastern Chongqing[J]. Carsologica Sinica, 2019, 38(5): 670-681. doi: 10.11932/karst20190503 [49] Wang X, Zhou X, Zheng Y, Song C, Long M, Chen T, Ren Z, Yang M, Li X, Guo J. Hydrochemical characteristics and mixing behavior of thermal springs along the Bijiang River in the Lanping basin of China[J]. Environmental Earth Sciences, 2017, 76: 487. [50] 赵佳怡, 张薇, 张汉雄, 屈泽伟, 李曼, 岳高凡. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4): 81-89.ZHAO Jiayi, ZHANG Wei, ZHANG Hanxiong, QU Zewei, LI Man, YUE Gaofan. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 81-89. [51] 张彦鹏, 黎清华, 余绍文. 海南岛东海岸官塘地区地热水水化学特征及其循环演化过程识别[J]. 地球科学, 2024, 49(3): 952-964.ZHANG Yanpeng, LI Qinghua, YU Shaowen. Hydrochemical characteristics constraints on evolution of geothermal water in Guantang area on the east coast of Hainan Island[J]. Earth Science, 2024, 49(3): 952-964. [52] 徐刚, 伍坤宇, 王鹏, 陈永东, 李兴彦, 胡林, 刘子畅, 李海. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3): 299-310. doi: 10.11932/karst20200301XU Gang, WU Kunyu, WANG Peng, CHEN Yongdong, LI Xingyan, HU Lin, LIU Zichang, LI Hai. Hydrogeochemical characteristics of the geothermal field in Wenquan basin, northern Tibet[J]. Carsologica Sinica, 2020, 39(3): 299-310. doi: 10.11932/karst20200301 -