• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨孔电磁波CT法在不同工作模式下对小型溶洞的分辨能力研究

陈丰毅 潘剑伟 宋宏明 杨晨 槐玉鹿

陈丰毅,潘剑伟,宋宏明,等. 跨孔电磁波CT法在不同工作模式下对小型溶洞的分辨能力研究[J]. 中国岩溶,2025,44(2):340-350 doi: 10.11932/karst20250211
引用本文: 陈丰毅,潘剑伟,宋宏明,等. 跨孔电磁波CT法在不同工作模式下对小型溶洞的分辨能力研究[J]. 中国岩溶,2025,44(2):340-350 doi: 10.11932/karst20250211
CHEN Fengyi, PAN Jianwei, SONG Hongming, YANG Chen, KUI Yulu. Research on the resolution of cross-hole electromagnetic wave CT method for small karst caves under different working patterns[J]. CARSOLOGICA SINICA, 2025, 44(2): 340-350. doi: 10.11932/karst20250211
Citation: CHEN Fengyi, PAN Jianwei, SONG Hongming, YANG Chen, KUI Yulu. Research on the resolution of cross-hole electromagnetic wave CT method for small karst caves under different working patterns[J]. CARSOLOGICA SINICA, 2025, 44(2): 340-350. doi: 10.11932/karst20250211

跨孔电磁波CT法在不同工作模式下对小型溶洞的分辨能力研究

doi: 10.11932/karst20250211
基金项目: 贵州省科技计划项目([2020]1Y173);国家自然科学基金青年基金项目(42004122)
详细信息
    作者简介:

    陈丰毅(1992-),男,工程师,主要从事工程与环境地球物理方面的研究。 E-mail:229605052@qq.com

    通讯作者:

    潘剑伟(1988-),男,副教授,主要从事电磁勘探方法的教学和研究工作。 E-mail:jwpan@gzu.edu.cn

  • 中图分类号: P631;P642.25

Research on the resolution of cross-hole electromagnetic wave CT method for small karst caves under different working patterns

  • 摘要: 跨孔电磁波CT法是一种原位无损的探测方法,因其具有较高的分辨率及施工效率,能够直观、清晰地反映出地下局部异常体的空间分布,被广泛应用于溶洞探测、路基注浆质量检测等领域。但目前关于该方法对小型溶洞分辨能力的影响因素研究并不多见。文章利用电磁波数值模拟系统和自编添加电磁噪声程序,通过控制变量的方法分别对不同介质吸收系数、不同定点距、孔间距工作模式情况下,研究了电磁波CT法对小型溶洞探测的分辨能力。结果表明,围岩与探测目标体的吸收系数差异越大,越有利于电磁波CT法对异常体的分辨,但该过程也受环境电磁噪声干扰的影响。随着环境电磁噪声干扰的增强,CT成像的分辨能力会明显降低;定点距越大方法的分辨能力也降低。对小型溶洞进行探测时,为确保成像的精度,建议定点间距最好不要超过4 m;过大的钻孔间距会降低电磁波CT法对小型溶洞的分辨能力,数值模拟结果表明,利用CT法对小型溶洞进行探测时,钻孔间距一般不要超过30 m。

     

  • 图  1  电磁波CT法观测示意图

    Figure  1.  Schematic diagram of electromagnetic wave CT observation system

    图  2  正演模型示意图

    Figure  2.  Schematic diagram of the forward modeling

    图  3  不同吸收系数差异及不同电磁噪声干扰情况下的电磁波CT法的反演成像图

    (a)、(b)、(c)吸收系数差异为0.1 dB·m−1,电磁噪声分别为1%、2%、3% (d)、(e)、(f) 吸收系数差异为0.3 dB·m−1,电磁噪声分别为1%、2%、3% (g)、(h)、(i) 吸收系数差异为0.6 dB·m−1,电磁噪声分别为1%、2%、3%

    Figure  3.  Inversion results of electromagnetic wave CT method under different absorption coefficients and noise disturbances

    (a) The difference in absorption coefficients for (b) and (c) is 0.1 dB·m−1, while the difference in absorption coefficients for electromagnetic noise is 1%, 2%, and 3%, respectively. The difference in absorption coefficients for (d), (e), and (f) is 0.3 dB·m−1, while the difference in absorption coefficients for electromagnetic noise is 1%, 2%, and 3%, respectively. The difference in absorption coefficients for electromagnetic noise is 0.6 dB·m−1, and the difference in absorption coefficients for electromagnetic noise is 1%, 2%, and 3%, respectively

    图  4  不同定点距及不同噪声干扰情况下电磁波CT法的反演成像图

    (a)、(b)、(c)定点距为1 m,噪声干扰分别为1%、2%、3% (d)、(e)、(f) 定点距为4 m,噪声干扰分别为1%、2%、3% (g)、(h)、(i) 定点间距为8 m,噪声干扰分别为1%、2%、3%

    Figure  4.  Inversion results of electromagnetic wave CT method under different transmitting spacings and noise disturbances

    (a) The fixed-point distance for (b) and (c) is 1 m, and the noise interference is 1%, 2%, and 3%, respectively. The fixed-point distance for (d), (e), and (f) is 4 m, and the noise interference is 1%, 2%, and 3%, respectively. The fixed-point distance for (g), (h), and (i) is 8 m, and the noise interference is 1%, 2%, and 3%, respectively

    图  5  不同孔间距及不同吸收系数差异下电磁波CT法的反演结果成像图

    (a)、(b)、(c)吸收系数差异为0.6 dB·m−1,孔间距分别为10 m、20 m、30 m (d)、(e)、(f) 吸收系数差异为0.5 dB·m−1,孔间距分别为10 m、20 m、30 m (g)、(h)、(i) 吸收系数差异为0.4 dB·m−1,孔间距分别为10 m、20 m、30 m

    Figure  5.  Inversion results of electromagnetic wave CT method under different borehole spacings and absorption coefficients

    (a) The difference in absorption coefficients between (b) and (c) is 0.6 dB·m−1, with hole spacing of 10 m, 20 m, and 30 m, respectively. The difference in absorption coefficients between (d), (e), and (f) is 0.5 dB·m−1, with hole spacing of 10 m, 20 m, and 30 m, respectively. The difference in absorption coefficients between (g), (h), and (i) is 0.4 dB·m−1, with hole spacing of 10 m, 20 m, and 30 m, respectively

    图  6  不同频率下电磁波CT反演吸收系数断面图

    Figure  6.  Cross-sectional diagram of absorption coefficient inversion by electromagnetic wave CT at different frequencies

    图  7  电磁波CT推断地质断面及钻孔柱状图

    Figure  7.  Electromagnetic CT inferred geological section and borehole histogram

  • [1] 陈贻祥, 覃小群, 黄奇波, 甘伏平, 韩凯, 郑智杰, 贺德煌, 黄德健, 付昱, 蒋莹. 桂南陇瑞洼地浅层岩溶自然电场特征剖析[J]. 中国岩溶, 2018, 37(1):130-138. doi: 10.11932/karst2017y36

    CHEN Yixiang, QIN Xiaoqun, HUANG Qibo, GAN Fuping, HAN Kai, ZHENG Zhijie, HE Dehuang, HUANG Dejian, FU Yu, JIANG Ying. Analysis of the characteristics of self-potential anomalous in shallow karst area of Longrui valley, southern Guangxi, China[J]. Carsologica Sinica, 2018, 37(1): 130-138. doi: 10.11932/karst2017y36
    [2] 刘天云, 罗锐恒, 胡顺强, 赵永宾, 潘晓东, 刘伟. 文山小河尾水库岩溶渗漏水文地质条件与管道位置识别[J]. 中国岩溶, 2022, 41(1):88-99. doi: 10.11932/karst20220104

    LIU Tianyun, LUO Ruiheng, HU Shunqiang, PAN Xiaodong, LIU Wei. Hydrogeological conditions of karst leakage and identification of pipeline location in Xiaohewei reservoir, Wenshan[J]. Carsologica Sinica, 2022, 41(1): 88-99. doi: 10.11932/karst20220104
    [3] 李志义, 白明洲, 许兆义, 陈祥,王成亮,郭蒙. 深长桩基础施工期岩溶处置实时效果无损检测方法研究[J]. 铁道学报, 2012, 34(5):91-96. doi: 10.3969/j.issn.1001-8360.2012.05.015

    LI Zhiyi, BAI Mingzhou, XU Zhaoyi, CHEN Xiang, WANG Chengliang, GUO Meng. Study on Real-time NDT Method Applied in Evaluating the Performance of Karst Cave Treatment in the Course of Construction of Deep Bridge Piles Foundation[J]. Journal of the China Railway Society, 2012, 34(5): 91-96. doi: 10.3969/j.issn.1001-8360.2012.05.015
    [4] Lapierre L, Zapata R, Lepinay P, et al. Karst exploration: Unconstrained attitude dynamic control for an AUV-Science Direct[J]. Ocean Engineering, 2020, 219.
    [5] Chalikakis K, Plagnes V, Guerin R, Valois R,Bosch F. Contribution of geophysical methods to karst-system exploration: An overview[J]. Hydrogeology journal, 2011, 19(6): 1169-1180. doi: 10.1007/s10040-011-0746-x
    [6] 张银松, 曹聪, 康世海, 刘家富. 重庆市中梁山地区隐伏塌陷特征及物探勘测的思路[J]. 中国岩溶, 2020, 39(6):918-927. doi: 10.11932/karst20200611

    ZHANG Yinsong, CAO Cong, KANG Shihai, LIU Jiafu. Characteristics of hidden karst collapse in the Zhongliangshan area of Chongqing and an approach of geophysical surveys[J]. Carsologica Sinica, 2020, 39(6): 918-927. doi: 10.11932/karst20200611
    [7] YI Hu, MENG Yizhao, SHU Liang. Research on detection standard of Karst Roadbed Grouting effect based on the Geophysical Methods[J]. Applied Mechanics and Materials, 2014, 3207(1118): 659-662.
    [8] HE Tuan, LI Guodong, LUO Feng. Research on Mining-Induced stress distribution of extrathick coal seams based on electromagnetic wave CT technology[J]. Advances in Civil Engineering, 2022, 2022.
    [9] 岳崇旺. 井间电磁波层析成像研究与应用[D]. 长春:吉林大学, 2007.

    YUE Chongwang. Study on the Cross-Well Electromagnetic Tomography and lts Application [D]. Changchun: Jilin University, 2007.
    [10] 谢朋. 基于SPAC法和电磁波CT法探测城市地下岩溶结构的对比研究[D].北京: 中国地震局地震研究所, 2019.

    XIE Peng. Based on SPAC method and electromagnetic wave CT method comparative study on detecting urban karst [D]. Beijing: China Earthquake Administration, 2019.
    [11] 胡熠. 电磁波层析法在南广铁路岩溶路基注浆质量检测上的应用[D].成都: 西南交通大学, 2010.

    HU Yi. Application of electromagnetic tomography in grouting quality detection of carst subgrade in Naning-Guangzhou railway[D]. Chengdu: Southwest Jiaotong University, 2010.
    [12] 郑立宁, 谢强, 胡熠, 徐飞飞, 任新红. 电磁波CT岩溶路基注浆质量检测试验研究[J]. 水文地质工程地质, 2010, 37(6):71-75, 125. doi: 10.3969/j.issn.1000-3665.2010.06.014

    ZHENG Lining, XIE Qiang, HU Yi, XU Feifei, REN Xinhong. Test study of electromagnetic CT for detecting grouting effect of Karst roadbed[J]. Hydrogeology and engineering geology, 2010, 37(6): 71-75, 125. doi: 10.3969/j.issn.1000-3665.2010.06.014
    [13] 陈杭, 邢亚东, 邓超云. 跨孔电磁波CT在煤矿采空区探测中的应用探究[J]. 矿山测量, 2022, 50(1):21-23, 37. doi: 10.3969/j.issn.1001-358X.2022.01.006

    CHEN Hang, XING Yadong, DENG Chaoyun. Application of borehole electromagnetic wave CT in coal mine goaf detection[J]. Mine Surveying, 2022, 50(1): 21-23, 37. doi: 10.3969/j.issn.1001-358X.2022.01.006
    [14] 赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4):1088-1094.

    ZHAO Xuchen, LI Xuejian, CAO Fangzhi, LEI Xiaodong, LI Chen, HAN Yuda. An analysis of the detection effect of cross-well electromagnetic wave CT in coal mine goaf[J]. geophysical and geochemical exploration, 2021, 45(4): 1088-1094.
    [15] TAN Hanhua, HUANG Jiahui, Qi Shengwen. Application of cross-hole radar tomograph in karst Area[J]. Environmental earth sciences, 2012, 66(1): 355-362. doi: 10.1007/s12665-011-1244-0
    [16] 黄生根, 刘东军, 胡永健. 电磁波CT技术探测溶洞的模拟分析与应用研究[J]. 岩土力学, 2018, 39(S1):544-550.

    HUANG Shenggen, LIU Dongjun, HU Yongjian. Simulation analysis and application study of electromagnetic wave computed tomography in detecting karst caves[J]. Geotechnical mechanics, 2018, 39(S1): 544-550.
    [17] 代方园, 高扬, 宿庆伟, 胡韬, 耿付强, 董亚楠. 瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用: 以山东省济南地区为例[J]. 中国岩溶, 2022, 41(2):308-317, 328.

    DAI Fangyuan, GAO Yang, SU Qingwei, HU Tao,GENG Fuqiang, DONG Yanan. Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics: A case study of Jinan, Shandong Province[J]. Carsologica Sinica, 2022, 41(2): 308-317, 328.
    [18] 袁永榜, 易洪春. 基于多频同步电磁波CT技术的煤层水力压裂范围探测试验[J]. 工矿自动化, 2020, 46(8):51-57.

    YUAN Yongbang, YI Hongchun. Detection test of coal seam hydraulic fracturing range based on multi-frequency synchronous electromagnetic wave CT technology[J]. Industrial and mining automation, 2020, 46(8): 51-57.
    [19] 付晖. 电磁波CT在水利水电工程岩溶探测中的应用[J]. 人民长江, 2003(11):26-27. doi: 10.3969/j.issn.1001-4179.2003.11.011

    FU Hui. Application of Electromagnetic Wave CT in Karst Exploration of Water Conservancy and Hydropower Engineering[J]. Yangtze River, 2003(11): 26-27. doi: 10.3969/j.issn.1001-4179.2003.11.011
    [20] 刘少虹, 潘俊锋, 秦子晗, 王书文, 张震, 高晓进, 李根. 基于电磁波CT探测的掘进工作面冲击危险性评价技术研究[J]. 岩石力学与工程学报, 2017, 36(S2):4093-4101.

    LIU Shaohong, PAN Junfeng, QIN Zihan, WANG Shuwen, ZHANG Zhen, LI Geng. Research on the risk assessment of rock burst of heading face based on electromagnetic wave CT detection[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4093-4101.
    [21] YANG Zhen, CHANG Shuai, WU Xiang . Mining Safety Mechanisms Adopting CT Projection Matrix Measured by Electromagnetic Wave Imaging in a Longwall Panel[J]. Disaster Advances, 2013, 6: 144-153.
    [22] 刘少虹, 潘俊锋, 王洪涛, 唐忠义, 夏永学, 曹延福, 张晨阳. 基于冲击启动过程的近场围岩冲击危险性电磁波CT评估方法[J]. 煤炭学报, 2019, 44(2):384-396.

    LIU Shaohong, PAN Junfeng, WANG Hongtao, TANG Zhongyi, XIA Yongxue, CAO Yanfu, ZHANG Chenyang. Electromagnetic wave CT evaluation method for rock burst hazard in near field based on rock burst start-up process[J]. Journal of Coal, 2019, 44(2): 384-396.
    [23] 邓小虎, 傅焰林. 跨孔电磁波层析成像在岩溶三维空间分布上的应用[J]. CT理论与应用研究, 2022, 31(1):13-22.

    DENG Xiaohu, FU Yanlin. Application of Cross-hole Electromagnetic Wave Tomography in Three Dimensional Spatial Distribution of Karst[J]. CT theory and application, 2022, 31(1): 13-22.
  • 加载中
图(7)
计量
  • 文章访问数:  8
  • HTML浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-23
  • 录用日期:  2024-07-03
  • 修回日期:  2024-02-27
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回