• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

列车振动环境场覆盖型岩溶土洞塌陷的动力响应特性研究

师海 贾智磊 白明洲 张晔 孙子冰

师 海,贾智磊,白明洲,等. 列车振动环境场覆盖型岩溶土洞塌陷的动力响应特性研究[J]. 中国岩溶,2025,44(2):328-339 doi: 10.11932/karst20250210
引用本文: 师 海,贾智磊,白明洲,等. 列车振动环境场覆盖型岩溶土洞塌陷的动力响应特性研究[J]. 中国岩溶,2025,44(2):328-339 doi: 10.11932/karst20250210
SHI Hai, JIA Zhilei, BAI Mingzhou, ZHANG Ye, SUN Zibing. Study on the dynamics response characterstics of covered soil-cave type karst collapse under train vibration environment[J]. CARSOLOGICA SINICA, 2025, 44(2): 328-339. doi: 10.11932/karst20250210
Citation: SHI Hai, JIA Zhilei, BAI Mingzhou, ZHANG Ye, SUN Zibing. Study on the dynamics response characterstics of covered soil-cave type karst collapse under train vibration environment[J]. CARSOLOGICA SINICA, 2025, 44(2): 328-339. doi: 10.11932/karst20250210

列车振动环境场覆盖型岩溶土洞塌陷的动力响应特性研究

doi: 10.11932/karst20250210
基金项目: 国家自然科学基金项目(41907260,42172311);中央引导地方科技发展资金项目(216Z3802G)
详细信息
    作者简介:

    师海(1987-),男,博士,副教授,主要从事岩溶灾害防治和地面塌陷领域的教学科研工作。E-mail:shihai@bjtu.edu.cn

  • 中图分类号: P642.25

Study on the dynamics response characterstics of covered soil-cave type karst collapse under train vibration environment

  • 摘要: 为揭示列车振动荷载作用下铁路周边覆盖型岩溶土洞动力响应特性,以京沪高铁(江西段)某潜在岩溶塌陷点为研究对象,通过离散元压缩试验对塌陷土体的强度参数进行标定,引入接触黏结模型,建立列车振动环境场覆盖型下伏岩溶土洞的地面流固耦合模型,从细观角度分析了不同振动荷载频率下塌陷区土体变形特征,研究了列车振动环境场土体的动力响应过程。研究表明:塌陷区土体颗粒的竖向速度、竖向位移、土体孔隙率与振动荷载频率之间的关系不明显,土体应变率随振动频率增加而增大;受列车振动环境场的影响,塌陷区土体颗粒的竖向速度、竖向位移变化量相对更大,动力特征更明显;确定了残坡积层粉质黏土覆盖层区域列车运行引起的振动在土层中的影响范围,当土洞距路基3 m时,列车动荷载影响深度在5.25 m范围内。研究成果对揭示列车环境振动扰动下浅层地表岩溶塌陷的动力学机制有重要意义,可为岩溶区铁路的运营安全和岩溶塌陷的防灾减灾提供科学依据。

     

  • 图  1  研究区岩溶地貌

    Figure  1.  Karst landforms in the study area

    图  2  塌陷坑的剖面结构

    Figure  2.  Profile structure of collapse pit

    图  3  双轴试验模型

    Figure  3.  Biaxial test model

    图  4  不同围压下应力-应变曲线

    Figure  4.  Stress-strain curves under different confining pressures

    图  5  数值模型及测点布置图

    Figure  5.  Numerical model and measuring points

    图  6  管域模型耦合机制

    Figure  6.  Pipe domain model coupling mechanism

    图  7  流固耦合管域模型

    Figure  7.  Fluid-Structure Interaction(FSI) pipe domain model

    图  8  振动荷载施加示意图

    Figure  8.  Schematic diagram of vibration load application

    图  9  列车振动荷载-时间曲线

    Figure  9.  Train vibration load-time curve

    图  10  不同加载频率下土颗粒竖向速度变化

    Figure  10.  Vertical velocity variation of soil particles under different loading frequency

    图  11  不同加载频率下颗粒迁移距离变化

    Figure  11.  Variation of migration distance of soil particles under different loading frequency

    图  12  不同加载频率下孔隙率变化

    Figure  12.  Variation of porosity under different loading frequency

    图  13  振动作用下测点土颗粒竖向速度变化

    Figure  13.  Vertical velocity variation of soil particles at measurement points under vibration

    图  14  测点竖向速度幅值空间变化曲线

    Figure  14.  Spatial variation curve of measure points vertical velocity amplitude

    图  15  振动荷载作用下土颗粒迁移距离

    Figure  15.  Migration distance of soil particles under vibration loading

    图  16  振动荷载作用下土体竖向应变率

    Figure  16.  Vertical strain rate of soil under vibration loading

    图  17  不同振动频率下土体竖向应变率变化

    Figure  17.  Vertical strain rate under different vibration frequencies

    表  1  地层岩土体物理力学参数

    Table  1.   Physical and mechanical parameters of stratum

    名称 黏聚力/
    kPa
    弹性模量/
    GPa
    内摩擦角/
    °
    干密度/
    g·cm−3
    残坡积层粉质黏土 12 24 1.75
    坡洪积层粉质黏土 10 25 1.82
    灰岩 52 35 2.52
    下载: 导出CSV

    表  2  平行粘结模型细观参数标定

    Table  2.   Microscopic parameters of parallel bond model

    平行粘结模型
    细观参数
    符号 单位 数值
    颗粒密度 density kg·m−3 1800
    颗粒最小半径 rdmin m 0.06
    最大最小半径比 Kratio 3.0
    湿度 damp 0.7
    孔隙率 porosity 0.28
    有效模量 emod Pa 1e8
    刚度比 Kratio 1.25
    凝聚力 pb_coh Pa 1e4
    抗拉强度 pb_ten Pa 1e5
    内摩擦角 pb_fa ° 25
    粘结间隙 bond gap m 0.0012
    摩擦系数 fric 0.5
    下载: 导出CSV
  • [1] Bai Haibo, Ma Dan, Chen Zhanqing. Mechanical behavior of groundwater seepage in karst collapse pillars[J]. Engineering Geology, 2013, 3: 103-124.
    [2] 李海涛, 陈邦松, 杨雪, 胡伏生, 房浩. 岩溶塌陷监测内容及方法概述[J]. 工程地质学报, 2015, 23(1):126-134.

    LI Haitao, CHEN Bangsong, YANG Xue, HU Fusheng. Review on monitoring contents and methods for karst collapse[J]. Journal of Engineering Geology, 2015, 23(1): 126-134.
    [3] 张严, 朱武, 赵超英, 韩炳权. 佛山地铁塌陷InSAR时序监测及机理分析[J]. 工程地质学报, 2021, 29(4):1167-1177.

    ZHANG Yan, ZHU Wu, ZHAO Chaoying, HAN Bingquan. Moniting and inversion of Foshan metro collapse with multi temporal InSAR and field investigation[J]. Journal of Engineering Geology, 2021, 29(4): 1167-1177.
    [4] 宋章, 王科, 蒋良文, 王茂靖. 岩溶区铁路勘察防治技术研究现状及发展趋势[J]. 高速铁路技术, 2018, 9(5):38-43. doi: 10.12098/j.issn.1674-8247.2018.05.008

    SONG Zhang, WANG Ke, JIANG Liangwen, WANG Maojing. Research status and developing trends of reconnaissance and control technology of railway in karst area[J]. High Speed Railway Technology, 2018, 9(5): 38-43. doi: 10.12098/j.issn.1674-8247.2018.05.008
    [5] 唐万春, 许模, 于贺艳. 武广客运专线英德段岩溶塌陷发育规律研究[J]. 地质与勘探, 2011, 47(4):699-704.

    TANG Wancun, XU Mo, YU Heyan. Study on karst collapse developing regularity of the Yingde section on the Wuhan-Guangzhou passenger special line[J]. Geology and Exploration, 2011, 47(4): 699-704.
    [6] 蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417. doi: 10.11932/karst20190311

    MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3): 411-417. doi: 10.11932/karst20190311
    [7] 时刚, 王宇虓, 武天仪, 刘忠玉. 交通荷载下城市路面塌陷问题的试验研究[J]. 地下空间与工程学报, 2020, 16(4):1202-1209.

    SHI Gang, WANG Yuxiao, WU Tianyi, LIU Zhongyu. Model experiments on ground collapse under traffic roads[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1202-1209.
    [8] 王涛, 施斌, 马龙祥, 张超, 邓永锋. 粉细砂地层对地铁列车荷载的动力响应及长期变形研究[J]. 工程地质学报, 2020, 28(6):1411-1418.

    WANG Tao, SHI Bin, MA Longxiang, ZHANG Chao, DENG Yongfeng. Dynamic response and long term cumulative deformation of silty sand stratum induced by metro train vibration loads[J]. Journal of Engineering Geology, 2020, 28(6): 1411-1418.
    [9] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-188. doi: 10.11932/karst2021y001

    LUO Xiaojie, LUO Cheng. Three-mechanism theory(TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2): 171-188. doi: 10.11932/karst2021y001
    [10] F Gutiérrez,M Parise,J D Waele,H Jourde. A review on natural and human-induced geohazards and impacts in karst[J]. Earth Science Reviews, 2014, 138: 61-88. doi: 10.1016/j.earscirev.2014.08.002
    [11] Anchuela Ó P, Miguel G S, Bádenas B, et al. Evaluation of pinnacle reef distribution at shallow subsurface using integrated geophysical methods: A case study from the upper Kimmeridgian (Spain)[J]. Marine and Petroleum Geology, 2016, 76: 329-334. doi: 10.1016/j.marpetgeo.2016.05.027
    [12] Kaufmann G, Romanov D. Structure and evolution of collapse sinkholes: combined interpretation from physico-chemical modelling and geophysical field work[J]. Journal of Hydrology, 2016, 9: 688-698.
    [13] 蒋小珍, 雷明堂, 管振德. 单层土体结构岩溶土洞的形成机理[J]. 中国岩溶, 2012, 31(4):426-432. doi: 10.3969/j.issn.1001-4810.2012.04.012

    JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Formation mechanism of karst soil-void in single-layer soil structure condition[J]. Carsologica Sinica, 2012, 31(4): 426-432. doi: 10.3969/j.issn.1001-4810.2012.04.012
    [14] 肖先煊. 覆盖型岩溶区水气相互驱动盖层变形演化及塌陷机理研究[D]. 成都: 成都理工大学, 2018.

    XIAO Xianxuan. Deformation behavior evolution and collapse mechanism of karst covers under water-air interaction in karst area [D]. Chengdu: Chengdu University of Technology, 2018.
    [15] 罗小杰. 也论覆盖型岩溶地面塌陷机理[J]. 工程地质学报, 2015, 23(5):886-895.

    LUO Xiaojie. Further discussion on mechanism of covered karst ground collapse[J]. Journal of Engineering Geology, 2015, 23(5): 886-895.
    [16] 程星, 黄润秋. 铁路振动及其在岩溶塌陷中的致塌力研究[J]. 岩石力学与工程学报, 2003, 12:2062-2066. doi: 10.3321/j.issn:1000-6915.2003.12.021

    CHENG Xing, HUANG Runqiu. Study on train-induced vibration and its influence on karst collapse[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 12: 2062-2066. doi: 10.3321/j.issn:1000-6915.2003.12.021
    [17] 陈学军, 余思喆, 宋宇, 李佳明, 陈议城, 陈李洁, 赵志永, 杨越. 采矿爆破振动波在岩溶区的传播影响因素分析[J]. 地质力学学报, 2018, 24(5):692-698. doi: 10.12090/j.issn.1006-6616.2018.24.05.070

    CHEN Xuejun, YU Sizhe, SONG Yu, LI Jiaming, CHEN Yicheng, CHEN Lijie, ZHAO Zhiyong, YANG Yue. Analysis of factors influencing the propagation of mining blasting vibration wave in karst area[J]. Journal of Geomechanics, 2018, 24(5): 692-698. doi: 10.12090/j.issn.1006-6616.2018.24.05.070
    [18] Xia K Z, Chen C X, et al. Engineering geology and ground collapse mechanism in the Chengchao Iron-ore Mine in China[J]. Engineering Geology, 2019, 249: 129-147. doi: 10.1016/j.enggeo.2018.12.028
    [19] 熊志涛, 刘鹏瑞, 杨涛, 邵勇. 江夏法泗岩溶塌陷区冲孔桩施工引发岩溶塌陷的成因机理[J]. 中国岩溶, 2018, 37(1):120-129. doi: 10.11932/karst20180108

    XIONG Zhitao, LIU Pengrui, YANG Tao, SHAO Yong. Mechanism of karst collapse caused of punching pile construction in Jiangxia fasi karst collapse area[J]. Carsologica Sinica, 2018, 37(1): 120-129. doi: 10.11932/karst20180108
    [20] 贾继成, 孟宪洲, 白平. 滕州荆泉水源地岩溶塌陷特征与成因分析[J]. 山东国土资源, 2018, 34: 41-46.

    JIA Jicheng, MENG Xianzhou, BAI Ping. Analysis and characteristics and orings of karst collapse in Jingquan water source in Tengzhou[J]. Shangdong Land and Resources, 2018, 34(6): 41-46.
    [21] 余政兴, 金福喜, 段选亮. 河床透-阻型岩溶塌陷形成机理[J]. 中国地质灾害与防治学报, 2020, 31(2):57-66.

    YU Zhengxing, JIN Xuxi, DUAN Xuanliang. Formation mechanism of karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 57-66.
    [22] 李卓俊, 蒙彦, 董志明, 贾龙, 潘宗源, 管振德, 周富彪. 土洞型岩溶塌陷发育过程气体示踪试验研究: 以广州金沙洲为例[J]. 中国岩溶, 2021, 40(2):238-245. doi: 10.11932/karst2021y18

    LI Zhuojun, MENG Yan, DONG Zhiming, JIA Long, PAN Zongyuan, GUAN Zhende, ZHOU Fubiao. Experimental study of gas tracer simulation of karst collapse development process: An example of Jinshazhou, Guangzhou[J]. Carsologica Sinica, 2021, 40(2): 238-245. doi: 10.11932/karst2021y18
    [23] 李才华, 窦鹏冲. 岩溶地面塌陷致塌机理的物理模型试验分析[J]. 武汉大学学报(工学版), 2021, 54(增2):239-242.

    LI Chaihua, DOU Pengchong. Physical model test analysis of the collapse mechanism of karst ground[J]. Engineering Journal of Wuhan University, 2021, 54(Sup.2): 239-242.
    [24] 王飞, 柴波, 徐贵来, 陈龙, 熊志涛. 武汉市岩溶塌陷的演化机理研究[J]. 工程地质学报, 2017, 25(3):824-832.

    WANG Fei, CHAI Bo, XU Guilai, CHEN Long, XIONG Zhitao. Evolution mechanism of karst sinkholes in Wuhan city[J]. Journal of Engineering Geology, 2017, 25(3): 824-832.
    [25] 魏子钧. 动静荷载作用下岩溶塌陷易发区高速铁路路基稳定性分析[D], 北京: 北京交通大学. 2021.

    WEI Zijun. Stability analysis of high-speed railway subgrade in karst col1pse prone area under dynamic and static load[D]. Beijing: Beijing Jiaotong University. 2021.
    [26] 陈凯, 葛颖, 张全, 陈砺锋, 刘智奇. 基于离散元模拟的巨厚煤层分层开采覆岩裂隙演化分形特征[J]. 工程地质学报, 2021, 29(4):1113-1120.

    CHEN Kai, GE Ying, ZHANG Quan, CHEN Lifeng, LIU Zhiqi. Discrete element simulation for crack fractal evolution laws associated with slicing mining in super thick coal stratum[J]. Journal of Engineering Geology, 2021, 29(4): 1113-1120.
    [27] 何树江. 基于颗粒流的灰岩细观力学参数标定方法及其敏感性分析[D]. 济南: 山东大学, 2018.

    HE Shujiang. Calibration method and sensitivity analysis of micromechanic parameters for limestone based on particle flow[D]. Jinan: Shandong University, 2018.
    [28] 周剑, 王彦兵, 张路青, 金永军, 涂新斌. 基于离散颗粒模型的岩体结构面动-静态刚度系数对比的数值模拟研究[J]. 工程地质学报, 2021, 29(1):25-33.

    ZHOU Jian, WANG Yanbing, ZHANG Luqing, JIN Yongjun, TU Xinbin. Numerical study on dynamic static stiffness coefficient of rock fractures based on discrete particle model[J]. Journal of Engineering Geology, 2021, 29(1): 25-33.
    [29] 许江波, 曹宝花, 余洋林, 骆永震. 基于PFC3D的黄土三轴试验细观参数敏感性分析[J]. 工程地质学报, 2021, 29(5):1342-1353.

    XU Jiangbo, CAO Baohua, YU Yanglin, LUO Yongzhen. Sensitivity analysis of meso parameters in loess triaxial test based on PFC3D[J]. Journal of Engineering Geology, 2021, 29(5): 1342-1353.
    [30] 周建, 张映钱, 方亿刚, 刘宇. 水位变动及降雨入渗联合作用对岩溶地面塌陷的影响分析[J]. 水利与建筑工程学报, 2016, 14(1):218-222. doi: 10.3969/j.issn.1672-1144.2016.01.041

    ZHOU Jian, ZHANG Yingqian, FANG Yigang, LIU Yu. Analysis of joint action of water level fluctuation and rainfall on the influence of karst[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(1): 218-222. doi: 10.3969/j.issn.1672-1144.2016.01.041
    [31] 朱遥, 刘春, 刘辉, 黄靥欢, 秦岩, 邓尚. 颗粒形态对砂土抗剪强度影响的试验和离散元数值模拟[J]. 工程地质学报, 2020, 28(3):490-499.

    ZHU Yao, LIU Chun, LIU Hui, HUANG Yehuan, QIN Yan, DENG Shang. Experiment and discrete element numerical simulation for influence of particle morphology on shear strength of sand[J]. Journal of Engineering Geology, 2020, 28(3): 490-499.
    [32] 雷晓丹, 杨忠平, 翟航, 胡元鑫. 土石混合体块石破碎影响因素的颗粒流数值研究[J]. 工程地质学报, 2020, 28(6):1193-1204.

    LEI Xiaodan, YANG Zhongping, ZHAI Hang, HU Yuanxin. Particle flow numerical research on factors influencing rock block breakage characteristics of soil rock mixtures[J]. Journal of Engineering Geology, 2020, 28(6): 1193-1204.
    [33] 姚玉相. 基于离散单元法的高填黄土减载明洞土拱效应细观数值模拟研究[D]. 兰州:兰州交通大学, 2020.

    YAO Yuxiang. Analysis on meso-mechanism of soil srching for unloading structure of high-filled cut-and-cover tunnel based on DEM[D].Lanzhou: Lanzhou Jiaotong University, 2020.
    [34] 王祥秋, 杨林德, 高文华. 铁路隧道提速列车振动测试与荷载模拟[J]. 振动与冲击, 2005, 24(3):99-102, 107, 10. doi: 10.3969/j.issn.1000-3835.2005.03.029

    WANG Xiangqiu, YANG Linde, GAO Wenhua. In site vibration measurement and load simulation of the raising speed train in railway tunnel[J]. Journal of Vibration and Shock, 2005,24(3): 99-102, 107, 10. doi: 10.3969/j.issn.1000-3835.2005.03.029
    [35] 白明洲, 宋雷鸣. 高速铁路环境保护[M]. 北京: 中国铁道出版社, 2021.

    BAI Mingzhou, SONG Leiming. Environmental protection of high-speed railway[M]. Beijing: China Railway Publishing House, 2021
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  8
  • HTML浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-30
  • 录用日期:  2024-11-01
  • 修回日期:  2024-10-08
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回