• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南某城区地下水“三氮”空间分布及风险管控研究

黄艳采 金波 曾牡丹 向刚

黄艳采,金 波,曾牡丹,等. 西南某城区地下水“三氮”空间分布及风险管控研究[J]. 中国岩溶,2025,44(2):274-282 doi: 10.11932/karst20250206
引用本文: 黄艳采,金 波,曾牡丹,等. 西南某城区地下水“三氮”空间分布及风险管控研究[J]. 中国岩溶,2025,44(2):274-282 doi: 10.11932/karst20250206
HUANG Yancai, JIN Bo, ZENG Mudan, XIANG Gang. Research on the spatial distribution and risk control of 'three forms of nitrogen' in groundwater in an urban area of southwest China[J]. CARSOLOGICA SINICA, 2025, 44(2): 274-282. doi: 10.11932/karst20250206
Citation: HUANG Yancai, JIN Bo, ZENG Mudan, XIANG Gang. Research on the spatial distribution and risk control of "three forms of nitrogen" in groundwater in an urban area of southwest China[J]. CARSOLOGICA SINICA, 2025, 44(2): 274-282. doi: 10.11932/karst20250206

西南某城区地下水“三氮”空间分布及风险管控研究

doi: 10.11932/karst20250206
基金项目: 贵州省地矿局局管地质科学研究项目(黔地矿科合[2020] 5号)
详细信息
    作者简介:

    黄艳采(1992-),女,硕士研究生,主要从事水文地质、环境地质工作。E-mail:Huangyc2020@sina.com

    通讯作者:

    金波(1971-),男,高级工程师,主要从事岩土工程、矿山环境恢复与治理等工作。E-mail:530190124@qq.com

  • 中图分类号: X513

Research on the spatial distribution and risk control of "three forms of nitrogen" in groundwater in an urban area of southwest China

  • 摘要: 地下水的利用日益增加,水中“三氮”污染问题一直备受关注。研究以西南某城区为例,通过水文地质调查和水样检测,采用反距离权重法(IDW)对地下水中“三氮”进行插值分析,结合地下水流场模型,分析“三氮”的空间分布,并通过叠加分析,划定风险管控区域。结果表明,研究区“三氮”空间分布具有差异性,城区钻孔及污水处理厂对NH$_4^{+}$-N浓度影响更大,而农业及居民集中区对${\rm{NO}}_3^{-}$-N的影响更显著,NO$_2^{-}$-N整体情况较好,无明显污染;“三氮”含量亦有较大差异,${\rm{NO}}_3^{-}$-N最高浓度为96.00 mg·L−1,远大于NH$_4^{+}$-N(8.00 mg·L−1)和NO$_2^{-}$-N(0.500 mg·L−1),这与岩溶区特征相关。以Ⅲ类水指标为管控界线,将研究区划分为重点管控区(Ⅳ~Ⅴ类)、次重点管控区(Ⅲ类)及一般区(Ⅰ~Ⅱ类),其中重点管控区目标为控制污水的排放和渗漏以及农业活动中氮的流失,次重点管控区重点在预防进一步污染及优化指标,一般区维持现状。

     

  • 图  1  研究区调查及水样采样点布设

    Figure  1.  Survey of the study area and layout of water sampling points

    图  2  研究区水文地质调查

    Figure  2.  Hydrogeological survey of the study area

    图  3  研究区地下水流场

    Figure  3.  Groundwater flow field in the study area

    图  4  NH$_4^{+}$-N、NO$_2^{-}$-N、${\rm{NO}}_3^{-}$-N空间分布图

    Figure  4.  Spatial distribution of NH$_4^{+}$-N, NO$_2^{-}$-N and ${\rm{NO}}_3^{-}$-N

    图  5  风险管控区划分图

    Figure  5.  Zoning of risk control areas

    表  1  《地下水质量标准》(GB/T 14848-2017)中NH$_4^{+}$-N、NO$_2^{-}$-N、${\rm{NO}}_3^{-}$-N分类指标

    Table  1.   Classification indicators for NH$_4^{+}$-N、NO$_2^{-}$-N and ${\rm{NO}}_3^{-}$-N in the Standard for Groundwater Quality (GB/T 14848-2017)

    序号 指标/mg·L−1 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 Ⅴ类
    1 NH$_4^{+}$-N ≤0.02 ≤0.10 ≤0.50 ≤1.50 >1.50
    2 NO$_2^{-}$-N ≤0.01 ≤0.10 ≤1.00 ≤4.80 >4.80
    3 ${\rm{NO}}_3^{-}$-N ≤2.0 ≤5.0 ≤20.0 ≤30.0 >30.0
    注:Ⅰ类、Ⅱ类适用于各种用途;Ⅲ类主要适用于集中式生活饮用水水源及工农业用水;Ⅳ类适用于农业和部分工业用水,适当处理后可作生活饮用水;Ⅴ类不宜作为生活饮用水水源,其他用水可根据使用目的选用。
    下载: 导出CSV

    表  2  NH$_4^{+}$-N、NO$_2^{-}$-N、${\rm{NO}}_3^{-}$-N指标检测统计表

    Table  2.   Statistics of indicator testing for NH$_4^{+}$-N、NO$_2^{-}$-N and ${\rm{NO}}_3^{-}$-N

    编号NH$_4^{+}$-N_
    /mg·L−1
    NO$_2^{-}$-N
    /mg·L−1
    ${\rm{NO}}_3^{-}$-N
    /mg·L−1
    取样点
    类型
    取样高程
    /m
    编号NH$_4^{+}$-N_
    /mg·L−1
    NO$_2^{-}$-N
    /mg·L−1
    ${\rm{NO}}_3^{-}$-N
    /mg·L−1
    取样点
    类型
    取样高程
    /m
    100.30022.00上升泉900.02300.00218.00机井951.1
    20.050.16015.00机井891.0240.040.01628.00机井877.5
    300.3008.00机井867.7250.020.0127.24下降泉1054.0
    400.04025.00机井870.02600.01822.00机井942.2
    50.020.0027.03下降泉795.8270.040.00846.00机井906.0
    60.020.03615.28下降泉664.72800.0148.00下降泉910.0
    70.020.07040.00机井845.0290022.00机井919.0
    88.000.0021.18地下河出露650.03000.0108.00下降泉900.7
    98.000.00420.00机井875.7310.520.03011.51下降泉1015.0
    1000.00424.00机井818.5320.040.00430.00机井891.2
    110.040.05644.00机井763.13300.0024.00下降泉857.4
    1200.0028.00下降泉654.4340.020.0083.73下降泉868.0
    130.080.0080机井794.7350096.00机井874.3
    1400.20022.00机井762.0360010.00下降泉888.0
    1500.50025.00机井849.0370.020.00610.15下降泉818.0
    1600.00216.00下降泉799.038005.00机井848.0
    1700.0065.00机井850.0390.020.00222.45地下河出口756.6
    180.080.0022.23机井847.04000.0026.00地下河出口875.0
    1900.20010.00机井851.84100.0244.00下降泉1152.0
    200.040.00228.00机井863.5420.020.0029.01下降泉1075.0
    2100.00816.00机井895.7430.020.0085.90下降泉949.0
    2200.1600.16机井919.2
    下载: 导出CSV
  • [1] 黄海波, 高扬, 曹杰君, 黄红艳, 张旭, 毛亮, 张进忠, 周培. 都市农业村域地下水非点源氮污染及其风险评估[J]. 水土保持学报, 2010, 24(3):56-59, 70.

    HUANG Haibo, GAO Yang, CAO Jiejun, HUANG Hongyan, ZHANG Xu, MAO Liang, ZHANG Jinzhong, ZHOU Pei. Non-point source pollution of nitrogen in groundwater in urban agricultural region of Shanghai and risk assessment[J]. Journal of Soil and Water Conservation, 2010, 24(3): 56-59, 70.
    [2] 涂春霖, 陈庆松, 尹林虎, 李强, 和成忠, 刘振南. 我国地下水硝酸盐污染及源解析研究进展[J]. 环境科学, 2024, 45(6):3129-3141.

    TU Chunlin, CHEN Qingsong, YIN Linhu, LI Qiang, HE Chengzhong, LIU Zhennan. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science, 2024, 45(6): 3129-3141.
    [3] 吕晓立, 刘景涛, 朱亮, 刘春燕, 刘俊建. 兰州市地下水中“三氮”污染特征及成因[J]. 干旱区资源与环境, 2019, 33(1):95-100.

    LYU Xiaoli, LIU Jingtao, ZHU Liang, LIU Chunyan, LIU Junjian. Distribution and source of nitrogen pollution in groundwater of Lanzhou city[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 95-100.
    [4] 黄福杨, 单婷倩, 林静, 刘菲, 王彬, 黄一倪. 典型西南岩溶地下水抗生素污染指示因子识别[J]. 地质科技通报, 2024, 43(2):283-292.

    HUANG Fuyang, SHAN Tingqian, LIN Jing, LIU Fei, WANG Bin, HUANG Yini. Identification of indicators for antibiotic pollution in typical karst groundwater, Southwest China[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 283-292.
    [5] Kalhor K, Ghasemizadeh R, Rajic L, Alshawabkeh A. Assessment of groundwater quality and remediation in karst aquifers: A review[J]. Groundwater for Sustainable Development, 2019, 8: 104-121. doi: 10.1016/j.gsd.2018.10.004
    [6] 马杰. 地下水监测在污染场地管理中的重要作用、存在问题与对策建议[J]. 环境工程学报, 2022, 16(4):1063-1067. doi: 10.12030/j.cjee.202110059

    MA Jie. Significance, problems and countermeasures of groundwater monitoring for contaminated site management[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1063-1067. doi: 10.12030/j.cjee.202110059
    [7] 黄艳采, 张忠俊, 向刚, 陆雄轩, 王嘉铭, 黄卫星. 污染场地地下水“三氮”空间分布研究[J]. 环境工程, 2023, 41(S2):203-205, 208.

    HUANG Yancai, ZHANG Zhongjun, XIANG Gang, LU Xiongxuan, WANG Jiaming, HUANG Weixing. Study on spetial distribution of ammona-N, nitrati-N and nitrite-N in groundwater at a polluted site[J]. Environmental Engineering, 2023, 41(S2): 203-205, 208.
    [8] 崔亚丰, 何江涛, 王曼丽, 赵阅坤, 王菲. 岩溶地区地下水污染风险评价方法探究:以地苏地下河系流域为例[J]. 中国岩溶, 2016, 35(4):372-383.

    CUI Yafeng, HE Jiangtao, WANG Manli, ZHAO Yuekun, WANG Fei. Exploration of risk assessment method towards groundwater contamination in karst region: A case study in Disu underground river system basin[J]. Carsologica Sinica, 2016, 35(4): 372-383.
    [9] 陈卓, 刘文晓, 张丹, 吴志远, 夏天翔. 典型化工废渣污染土壤中汞的空间分布规律研究[J]. 环境科学学报, 2022, 42(4):422-431.

    CHEN Zhuo, LIU Wenxiao, ZHANG Dan, WU Zhiyuan, XIA Tianxiang. Spatial distribution and vertical migration of mercury in soil contaminated by chemical waste residues[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 422-431.
    [10] Gong G, Mattevada S, O'Bryant S. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas[J]. Environmental Research, 2014, 130: 59-69. doi: 10.1016/j.envres.2013.12.005
    [11] Almodaresi S A, Mohammadrezaei M, Dolatabadi M, Nateghi M R. Qualitative analysis of groundwater quality indicators based on Schuler and Wilcox diagrams: IDW and Kriging models[J]. Journal of Environmental Health and Sustainable Development, 2019, 4(4): 903-912.
    [12] 吴志强, 潘林艳, 代俊峰, 黄亮亮, 万祖鹏. 漓江流域岩溶与非岩溶农业小流域水体硝酸盐源解析[J]. 农业工程学报, 2022, 38(6):61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007

    WU Zhiqiang, PAN Linyan, DAI Junfeng, HUANG Liangliang, WAN Zupeng. Nitrate source apportionment of water in karst and non-karst agricultural sub-basins in the Lijiang River Basin of Guilin, Guangxi, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007
    [13] 许可, 陈鸿汉. 地下水中三氮污染物迁移转化规律研究进展[J]. 中国人口·资源与环境, 2011, 21(S2):421-424.

    XU Ke, CHEN Honghan. Progresson three forms of nitrogen contaminant transport and transform in groundwater[J]. China Population, Resources And Environment, 2011, 21(S2): 421-424.
    [14] 李霄, 王晓光, 柴璐, 朱巍, 何海洋, 王长琪. 沉积盆地地下水无机氮来源示踪及其演化模式[J]. 中国环境科学, 2021, 41(4):1856-1867. doi: 10.3969/j.issn.1000-6923.2021.04.040

    LI Xiao, WANG Xiaoguang, CHAI Lu, ZHU Wei, HE Haiyang, WANG Changqi. Sources tracing and evolution model of inorganic nitrogen of groundwater in sedimentary basin[J]. China Environmental Science, 2021, 41(4): 1856-1867. doi: 10.3969/j.issn.1000-6923.2021.04.040
    [15] 王晓玲, 郑晓通, 李松敏, 张福超. 农田排水沟渠底泥-间隙水-上覆水氮磷迁移转化规律研究[J]. 水利学报, 2017, 48(12):1410-1418.

    WANG Xiaoling, ZHENG Xiaotong, LI Songmin, ZHANG Fuchao. Study on the migration and transformation of nitrogen and phosphorus in sediment-interstitial water-overlying water in farmland drainage ditch[J]. Journal of Hydraulic Engineering, 2017, 48(12): 1410-1418.
    [16] 李丽君, 刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析 [J]. 岩矿测试, 2023, 42(4): 809-822.

    LI Lijun, LIU Qiang. Distribution characteristics and source analysis of “Three Nitrogen” in shallow groundwater in Hailun area of Heilongjiang Province [J]. Rock and Mineral Analysis, 2023, 42(4): 809−822.
    [17] 黄颖, 江涛, 丁杰, 禤映雪, 陈建耀, 李睿. 城镇化流域地下水氮素组成特征及来源解析[J]. 热带地理, 2023, 43(7):1400-1410.

    Huang Ying, Jiang Tao, Ding Jie, Xuan Yingxue, Chen Jianyao, Li Rui. Composition and source identification of nitrogen in groundwater in an urbanized basin[J]. Tropical Geography, 2023, 43(7): 1400-1410.
    [18] 黄金廷, 宋歌, 蒲芳, 王嘉玮, 李宗泽, 张方, 孙芳强. 层状包气带“三氮”污染物迁移转化原位实验研究 [J]. 生态环境学报, 2022, 31(6): 1208-1214.

    HUANG Jinting , SONG Ge , PU Fang , WANG Jiawei , LI Zongze , ZHANG Fang , SUN Fangqiang. Migration and transformation of “Three Nitrogen” pollutants in multilayer unsaturated zone: an in situ experiment [J]. Ecology and Environmental Sciences, 2022, 31(6): 1208-1214.
    [19] 赵然, 韩志伟, 申春华, 张水, 涂汉, 郭永丽. 典型岩溶地下河流域水体中硝酸盐源解析[J]. 环境科学, 2020, 41(6):2664-2670.

    ZHAO Ran, HAN Zhiwei, SHEN Chunhua, ZHANG Shui, TU Han, GUO Yongli. Identifying nitrate sources in a typical karst underground river basin[J]. Environmental Science, 2020, 41(6): 2664-2670.
    [20] 李扬, 杨桢, 康凤新, 刘金勇, 孙彦伟, 黄静波. 东阿水文地质单元地下水硝酸盐污染来源的同位素分析[J]. 中国岩溶, 2019, 38(1):19-27. doi: 10.11932/karst20190103

    LI Yang, YANG Zhen, KANG Fengxin, LIU Jinyong, SUN Yanwei, HUANG Jingbo. Isotope analysis on the source of nitrate contamination to groundwater in the Dong’e hydrogeologic unit[J]. Carsologica Sinica, 2019, 38(1): 19-27. doi: 10.11932/karst20190103
    [21] 杨平恒, 华茂松, 罗为群, 郭文静. 基于CiteSpace的岩溶地下水硝酸盐示踪研究进展[J]. 中国岩溶, 2024, 43(3):563-574. doi: 10.11932/karst2024y005

    YANG Pingheng, HUA Maosong, LUO Weiqun, GUO Wenjing. Research progress of nitrate tracing in karst groundwater based on CiteSpace[J]. Carsologica Sinica, 2024, 43(3): 563-574. doi: 10.11932/karst2024y005
    [22] Organization W H. Guidelines for drinking-water quality: incorporating the first and second addenda [R]. Geneva: World Health Organization, 2022.
    [23] 卞建民, 张真真, 韩宇. 松嫩平原地下水氮污染空间变异性及健康风险评价[J]. 重庆大学学报, 2015, 38(4):104-111. doi: 10.11835/j.issn.1000-582X.2015.04.015

    BIAN Jianmin, ZHANG Zhenzhen, HAN Yu. Spatial variabilitu and health risk assessment of nitrogen pollution in groundwater in Songnen Plain[J]. Journal of Chongqing Unibersity, 2015, 38(4): 104-111. doi: 10.11835/j.issn.1000-582X.2015.04.015
    [24] Zhang Y, Wu J, Xu B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China[J]. Environmental Earth Sciences, 2018, 77(7): 273. doi: 10.1007/s12665-018-7456-9
    [25] 陈余道, 程亚平, 蒋亚萍, 林鹏, 蒋灵芝. 岩溶地下河反硝化作用的有限性:一个碳酸盐岩管道的实验研究[J]. 环境科学学报, 2016, 36(10):3629-3635.

    CHEN Yudao, CHENG Yaping, JIANG Yaping, LIN Peng, JIANG Lingzhi. Limitation of denitrification in karst subterranean river: A carbonate-conduit experimental study[J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3629-3635.
    [26] 任坤, 潘晓东, 梁嘉鹏, 彭聪, 曾洁. 氧同位素解析典型岩溶流域地下水中硝酸盐来源与归趋[J]. 环境科学, 2021, 42(5):2268-2275.

    REN Kun, PAN Xiaodong, LIANG Jiapeng, PENG Cong, ZENG Jie. Sources and fate of nitrate in groundwater in a typical karst basin: insights from carbon, nitrogen, and oxygen isotopes[J]. Environmental Science, 2021, 42(5): 2268-2275.
    [27] 扈志勇, 杨梅. 岩溶区土壤氮流失及其对地下水的污染[J]. 人民长江, 2008(18):32-34. doi: 10.3969/j.issn.1001-4179.2008.18.012

    HU Zhiyong, YANG Mei. N loss in soil in karst area and its pollution to underground water[J]. Yangtze River, 2008(18): 32-34. doi: 10.3969/j.issn.1001-4179.2008.18.012
    [28] 庞朝晖, 李立波, 岳禹峰. 农村地下水硝酸盐氮污染及其防治[J]. 湖北农业科学, 2010, 49(10):2605-2608. doi: 10.3969/j.issn.0439-8114.2010.10.081

    PENG Zhaohui, LI Libo, YUE Yufeng. Remediation of groundwater polluted by nitrate in rural area[J]. Hubei Agricultural Sciences, 2010, 49(10): 2605-2608. doi: 10.3969/j.issn.0439-8114.2010.10.081
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  7
  • HTML浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-01
  • 录用日期:  2025-02-14
  • 修回日期:  2025-01-17
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回