• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广东青莲水岩溶−裂隙水系统的地下水化学物质来源解析

许兰芳 倪泽华 涂世亮 姜守俊 黄文龙 庄卓涵 杨宏宇

许兰芳,倪泽华,涂世亮,等. 广东青莲水岩溶−裂隙水系统的地下水化学物质来源解析[J]. 中国岩溶,2025,44(2):213-227 doi: 10.11932/karst20250201
引用本文: 许兰芳,倪泽华,涂世亮,等. 广东青莲水岩溶−裂隙水系统的地下水化学物质来源解析[J]. 中国岩溶,2025,44(2):213-227 doi: 10.11932/karst20250201
XU Lanfang, NI Zehua, TU Shiliang, JIANG Shoujun, HUANG Wenlong, ZHUANG Zhuohan, YANG Hongyu. Analysis of chemical substance sources in the groundwater of karst-fissure groundwater system in the Qinglian River, Guangdong Province, China[J]. CARSOLOGICA SINICA, 2025, 44(2): 213-227. doi: 10.11932/karst20250201
Citation: XU Lanfang, NI Zehua, TU Shiliang, JIANG Shoujun, HUANG Wenlong, ZHUANG Zhuohan, YANG Hongyu. Analysis of chemical substance sources in the groundwater of karst-fissure groundwater system in the Qinglian River, Guangdong Province, China[J]. CARSOLOGICA SINICA, 2025, 44(2): 213-227. doi: 10.11932/karst20250201

广东青莲水岩溶−裂隙水系统的地下水化学物质来源解析

doi: 10.11932/karst20250201
基金项目: 广东省地质勘查与城市地质专项“广东北江中上游地区1∶25万水文地质调查”(2023-31、2024-23、2025-21);广东省2023年度国家公园建设专项“广东南岭国家公园生态水文地质调查”(2023GJGY023)
详细信息
    作者简介:

    许兰芳(1985-),女,水工环地质工程师,博士,从事地球化学研究工作。E-mail:lanfangivy@163.com

    通讯作者:

    姜守俊(1980-),男,正高级工程师,从事水工环地质调查与研究工作。E-mail:59415122@qq.com

  • 中图分类号: P641.12

Analysis of chemical substance sources in the groundwater of karst-fissure groundwater system in the Qinglian River, Guangdong Province, China

  • 摘要: 作为国家“两屏三带”生态安全格局中典型流域的基本单元,掌握青莲水流域地下水水质状况,对筑牢南方丘陵山地带生态安全屏障、维护粤港澳大湾区生态安全具有重要意义。结合水文地质调查和地下水化学指标特征分析,采用正矩阵因子分解模型(PMF)分析方法,追踪地下水化学物质来源并定量分析影响地下水质量的因子贡献率。研究结果表明,流域内地下水化学物质主要来源于含镁碳酸盐和硅酸盐矿物的风化溶解(F1)、生活废水、农用肥料等人类活动(F2)、碳酸盐矿物的水−岩作用(F3)、含硫化肥的使用(F4)以及硅酸盐矿物和岩盐的风化溶解(F5)。各类矿物的风化和含水层水−岩作用等自然因素的贡献率为64%,是流域内地下水化学物质的主要来源,人类活动影响的来源仅占36%。水化学指标高含量分布区域和来源因子贡献率的空间分布区域有显著相关性,表明水化学对岩性和土地利用空间分布有响应关系。整体而言,岩溶水化学成分来源主要是碳酸盐、硅酸盐和岩盐矿物等风化溶解,局部地区还受生活废水和农用化肥的使用等人为活动的影响;火成岩裂隙水来源主要为硅酸盐矿物的风化溶解。地下水离子来源贡献率的定量分析有助于加深对研究区裂隙和岩溶含水层的认识,为地下水的科学管理提供依据。

     

  • 图  1  青莲水流域在南方丘陵山地带中的位置图(据文献[6, 8]修改)

    Figure  1.  Location of the Qinglian River Basin in the hilly and mountainous area of South China (modified from references [6, 8])

    图  2  青莲水流域位置图(a)、水文地质图和采样点分布(b)和土地利用分布图(c)

    Figure  2.  Location (a), hydrogeology and sampling sites (b), and land use (c) of the study area in Qinglian River Basin

    图  3  青莲水地质(a)和岩性分布图(b)

    Figure  3.  Geological map (a) and lithologic distribution (b) of Qinglian River

    图  4  地下水化学指标空间分布图(a−j)和Schoeller图(k)

    Figure  4.  Spatial distribution of chemical parameters (a−j) and the Schoeller diagram of groundwater (k)

    图  5  青莲水流域地下水水化学Durov图(a)和水化学类型分布图(b)

    Figure  5.  Durov diagram (a) and distribution map (b) of groundwater chemistry in the Qinglian River Basin

    图  6  地下水物质来源因子贡献率的空间分布图(a−e),饼图(f)和柱状图(g)

    Figure  6.  Spatial distribution (a−e), pie chart (f), and bar chart (g) of contribution rates of factors of groundwater substance sources

    图  7  青莲水流域地下水Gibbs图

    Figure  7.  Gibbs plot of groundwater in the Qinglian River Basin

    图  8  (Ca2+ + Mg2+)−(${\rm{HCO}}_3^{-}$ + ${\rm{SO}}_4^{2-}$)(a)、Ca2+−${\rm{HCO}}_3^{-}$(b)、${\rm{SO}}_4^{2-}$−${\rm{NO}}_3^{-}$(c)、Na+−Cl(d)关系图

    Figure  8.  Relationship plot of (Ca2+ + Mg2+) − (${\rm{HCO}}_3^{-}$ + ${\rm{SO}}_4^{2-}$) (a),Ca2+−${\rm{HCO}}_3^{-}$ (b),${\rm{SO}}_4^{2-}$−${\rm{NO}}_3^{-}$ (c),and Na+−Cl (d)

    图  9  来源因子影响区域的分布图

    Figure  9.  Distribution of the main areas affected by the source factors

    表  1  青莲水流域地下水样品的化学参数统计汇总表

    Table  1.   Statistical summary of chemical parameters of the groundwater samples in Qinglian River Basin

    化学指标pHK+Na+Ca2+Mg2+${\rm{HCO}}_3^{-}$Cl${\rm{SO}}_4^{2-}$${\rm{NO}}_3^{-}$TDS
    无量纲mg·L−1mg·L−1mg·L−1mg·L−1mg·L−1mg·L−1mg·L−1mg·L−1mg·L−1
    地下水质量标准a6.50~8.50100.00250.00250.0020.001000.00
    岩溶水最大值8.0928.6013.40122.0020.10360.0021.0081.3049.80415.00
    最小值6.870.100.2716.501.1067.001.000.800.1095.00
    平均值7.401.621.9179.555.40242.464.3910.738.31249.88
    标准偏差0.274.312.7320.454.7055.384.3713.819.9763.33
    火成岩裂隙水最大值7.572.6415.6012.600.7856.008.006.8014.10110.00
    最小值5.860.882.321.060.0511.000.500.050.1025.00
    平均值6.761.834.723.660.2622.401.950.872.7248.80
    标准偏差0.590.583.964.330.2413.322.282.104.1724.85
    注: a,GB/T 14848−2017《地下水质量标准》[28],“−”表示不是评价指标,无限值。
    下载: 导出CSV
  • [1] 中华人民共和国环境保护部. 全国地下水污染防治规划(2011-2020年)[R]. 2011.

    Ministry of Ecology and Environment of the People's Republic of China. National groundwater pollution control plan (2011-2020) [R]. 2011.
    [2] 廖驾, 朱振华, 彭毅, 韦珊瑚, 罗朝晖, 刘状, 徐强强, 谢亘. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶, 2023, 42(3):425-435, 481. doi: 10.11932/karst2023y003

    LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Zhaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis on D/18O and hydrochemical characteristics of karst groundwater in northwestern Hunan Province[J]. Carsologica Sinica, 2023, 42(3): 425-435, 481. doi: 10.11932/karst2023y003
    [3] 张海月, 杨平恒, 王建力, 蓝家程, 詹兆君, 任娟, 张宇. 城市化对岩溶水系统化学组分演化的影响:以重庆市南山老龙洞地下河为例[J]. 中国岩溶, 2017, 36(4):541-549. doi: 10.11932/karst20170416

    ZHANG Haiyue, YANG Pingheng, WANG Jianli, LAN Jiacheng, ZHAN Zhaojun, REN Juan, ZHANG Yu. Effect of urbanization on the hydrogeochemical evolution of karst groundwater system: A case of the Laolongdong watershed, Chongqing, China[J]. Carsologica Sinica, 2017, 36(4): 541-549. doi: 10.11932/karst20170416
    [4] 卢丽, 王喆, 裴建国, 杜毓超, 林永生, 樊连杰. 红水河中上游流域岩溶地下水水质影响因素的R型因子分析[J]. 中国岩溶, 2015, 34(4):415-419.

    LU Li, WANG Zhe, PEI Jianguo, DU Yuchao, LIN Yongsheng, FAN Lianjie. R-mode analysis for influencing factors of karst groundwater quality in middle and upper reaches of the Hongshuihe river[J]. Carsologica Sinica, 2015, 34(4): 415-419.
    [5] 中华人民共和国生态环境部. 2023中国生态环境状况公报[R]. 2023.

    Ministry of Ecology and Environment of the People's Republic of China. 2023 Bulletin of the State of Ecological Environment in China [R]. 2023.
    [6] Wang Liangjie, Ma Shuai, Jiang Jiang, Zhao Yuguo, Zhang Jinchi. Spatiotemporal variation in ecosystem services and their drivers among different landscape heterogeneity units and terrain gradients in the southern hill and mountain belt, China[J]. Remote Sensing, 2021, 13(7): 1375.
    [7] Zhu Chen, Schwartz Franklin. Hydrogeochemical processes and controls on water quality and water management[J]. Elements, 2010, 7: 169-174.
    [8] Xu Lanfang, Ni Zehua, Huang Wenlong, Tu Shiliang, Jiang Shoujun, Zhuang Zhuohan, Zhao Libo, Yang Hongyu. Groundwater geochemistry in the karst-fissure aquifer system of the Qinglian River Basin, China[J]. Hydrology, 2024, 11(11): 184.
    [9] Paatero Pentti, Tapper Unto. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
    [10] Brown Steven G. , Eberly Shelly, Paatero Pentti, Norris Gary A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results[J]. Science of the Total Environment, 2015, 518-519: 626-635. doi: 10.1016/j.scitotenv.2015.01.022
    [11] Paatero P, Eberly S, Brown S G, Norris G A. Methods for estimating uncertainty in factor analytic solutions[J]. Atmos. Meas. Tech., 2014, 7(3): 781-797. doi: 10.5194/amt-7-781-2014
    [12] Haji Gholizadeh Mohammad, Melesse Assefa M. , Reddi Lakshmi. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida[J]. Science of the Total Environment, 2016, 566-567: 1552-1567. doi: 10.1016/j.scitotenv.2016.06.046
    [13] Argyropoulos Georgios, Samara Constantini. Development and application of a robotic chemical mass balance model for source apportionment of atmospheric particulate matter[J]. Environmental Modelling & Software, 2011, 26(4): 469-481.
    [14] Koçak Ebru, Balcılar İlker. Spatio-temporal variation of particulate matter with health impact assessment and long-range transport - case study: Ankara, Türkiye[J]. Science of the Total Environment, 2024, 938: 173650. doi: 10.1016/j.scitotenv.2024.173650
    [15] Chen Kai, Liu Qimeng, Peng Weihua, Liu Xianghong. Source apportionment and natural background levels of major ions in shallow groundwater using multivariate statistical method: A case study in Huaibei Plain, China[J]. Journal of Environmental Management, 2022, 301: 113806. doi: 10.1016/j.jenvman.2021.113806
    [16] Zhang Han, Cheng Siqian, Li Hongfei, Fu Kang, Xu Yi. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China[J]. Science of the Total Environment, 2020, 741: 140383. doi: 10.1016/j.scitotenv.2020.140383
    [17] Wang Xiaoping, Zong Zheng, Tian Chongguo, Chen Yingjun, Luo Chunling, Li Jun, Zhang Gan, Luo Yongming. Combining positive matrix factorization and radiocarbon measurements for source apportionment of PM2.5 from a national background site in north China[J]. Scientific Reports, 2017, 7(1): 10648. doi: 10.1038/s41598-017-10762-8
    [18] Saba Tarek, Su Steave. Tracking polychlorinated biphenyls (PCBs) congener patterns in Newark Bay surface sediment using principal component analysis (PCA) and positive matrix factorization (PMF)[J]. Journal of Hazardous Materials, 2013, 260: 634-643. doi: 10.1016/j.jhazmat.2013.05.046
    [19] Wei Rongfei, Meng Zirui, Zerizghi Teklit, Luo Jie, Guo Qingjun. A comprehensive method of source apportionment and ecological risk assessment of soil heavy metals: A case study in Qingyuan city, China[J]. Science of the Total Environment, 2023, 882: 163555. doi: 10.1016/j.scitotenv.2023.163555
    [20] Chen Ruihui, YanguoTeng, Chen Haiyang, Hua Bin, Yang Jie, Yue Weifeng. Groundwater pollution and risk assessment based on source apportionment in a typical cold agricultural region in Northeastern China[J]. Science of the Total Environment, 2019, 696: 133972. doi: 10.1016/j.scitotenv.2019.133972
    [21] 郑悦华, 张晓远, 刘协亭. 基于GIS的粤北青莲水流域水土流失成因分析[J]. 广东水利水电, 2016(5):24-28. doi: 10.11905/j.issn.1008-0112.2016.05.007

    ZHENG Yuehua, ZHANG Xiaoyuan, LIU Xieting. Causes analysis of soil erosion in Qinglian River Satershed of north area of Guangdong Province based on GIS[J]. Guangdong Water Resources and Hydropower, 2016(5): 24-28. doi: 10.11905/j.issn.1008-0112.2016.05.007
    [22] 中华人民共和国自然资源部. DZ/T 0064-2021《地下水质量分析方法》[S].2021.

    Ministry of Natural Resources, People's Republic of China. DZ/T 0064-2021 Methods for groundwater quality analysis [S]. 2021.
    [23] Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928. doi: 10.1029/TR025i006p00914
    [24] Gibbs Ronald J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
    [25] 姜守俊, 许兰芳, 倪泽华, 杨宏宇, 涂世亮. 广东清远盆地地下水水文地球化学及流场特征[J]. 华南地质, 2023, 39(4):672-685. doi: 10.3969/j.issn.2097-0013.2023.04.008

    JIANG Shoujun, XU Lanfang, NI Zehua, YANG Hongyu, TU Shiliang. Hydrogeochemical characterization and flow field of groundwater in the Qingyuan Basin of Guangdong Province, China[J]. South China Geology, 2023, 39(4): 672-685. doi: 10.3969/j.issn.2097-0013.2023.04.008
    [26] Li Peiyue, Wu Jianhua, Qian Hui. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China[J]. Environmental Earth Sciences, 2013, 69(7): 2211-2225. doi: 10.1007/s12665-012-2049-5
    [27] Pu Junbing, Yuan Daoxian, Xiao Qiong, Zhao Heping. Hydrogeochemical characteristics in karst subterranean streams: a case history from Chongqing, China[J]. Carbonates and Evaporites, 2015, 30(3): 307-319. doi: 10.1007/s13146-014-0226-1
    [28] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. GB/T 148482017《地下水质量标准》[S]. 中国, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. GB /T 14848−2017 Groundwater quality standard [S]. China, 2017.
    [29] Cui Yuhuan, Wang Jie, Hao Shuang. Spatial variability of nitrate pollution and its sources in a hilly basin of the Yangtze River based on clustering[J]. Scientific Reports, 2021, 11(1): 16752. doi: 10.1038/s41598-021-96248-0
    [30] Jiang Yongjun, Wu Yuexia, Groves Chris, Yuan Daoxian, Kambesis Pat. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China[J]. Journal of Contaminant Hydrology, 2009, 109(1-4): 49-61. doi: 10.1016/j.jconhyd.2009.08.001
    [31] 王若帆, 赵良杰, 李强, 吉勤克补子, 焦恒, 江峰, 陈刚. 黔中洋水背斜分散排泄系统地下水化学特征[J]. 中国岩溶, 2023, 42(4):733-741. doi: 10.11932/karst20230409

    WANG Ruofan, ZHAO Liangjie, LI Qiang, JI Qinkebuzi, JIAO Heng, JIANG Feng, CHEN Gang. Chemical characteristics of groundwater in the dispersed drainage system of Yangshui anticline in central Guizhou[J]. Carsologica Sinica, 2023, 42(4): 733-741. doi: 10.11932/karst20230409
    [32] Chen Kai, Liu Qimeng, Yang Tingting, Ju Qiding, Hou Xikang, Gao Wei, Jiang Shaojie. Groundwater pollution source identification and health risk assessment in the North Anhui Plain, eastern China: Insights from positive matrix factorization and Monte Carlo simulation[J]. Science of the Total Environment, 2023, 895: 165186. doi: 10.1016/j.scitotenv.2023.165186
    [33] Xing Jianwei, Song Jinming, Yuan Huamao, Li Xuegang, Li Ning, Duan Liqin, Qu Baoxiao, Wang Qidong, Kang Xuming. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China[J]. Atmospheric Research, 2017, 190: 10-20. doi: 10.1016/j.atmosres.2017.02.001
    [34] Su Yong Hong, Feng Qi, Zhu Gao Feng, Si Jian Hua, Zhang Yan Wu. Identification and evolution of groundwater chemistry in the Ejin Sub-Basin of the Heihe River, Northwest China[J]. Pedosphere, 2007, 17(3): 331-342. doi: 10.1016/S1002-0160(07)60040-X
    [35] Sun Houyun, Sun Xiaoming, Wei Xiaofeng, Chen Ziran, Liu Wei, Huang Xingkai, Li Xia, Yin Zhiqiang, Liu Wenbo. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction[J]. Geology in China, 2022, 49(4): 1088-1113.
    [36] 孙厚云, 孙晓明, 卫晓锋, 陈自然, 刘卫, 黄行凯, 李霞, 殷志强, 刘文波. 河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据[J]. 中国地质, 2022, 49(4):1088-1113. doi: 10.12029/gc20220405

    SUN Houyun, SUN Xiaoming, WEI Xiaofeng, CHEN Zan, LIU Wei, HUANG Xingkai, LI Xia, YIN Zhiqiang, LIU Wenbo. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction[J]. Geology in China, 2022, 49(4): 1088-1113. doi: 10.12029/gc20220405
    [37] Mao Meng, Wang Xia, Zhu Xueqin. Hydrochemical characteristics and pollution source apportionment of the groundwater in the east foothill of the Taihang Mountains, Hebei Province[J]. Environmental Earth Sciences, 2021, 80(1): 14. doi: 10.1007/s12665-020-09341-4
    [38] Shen Zhenyao, Hou Xiaoshu, Li Wen, Aini Guzhanuer, Chen Lei, Gong Yongwei. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China[J]. Ecological Indicators, 2015, 48: 417-427. doi: 10.1016/j.ecolind.2014.08.019
    [39] Federico Cinzia, Aiuppa Alessandro, Favara Rocco, Valenza Mariano. Geochemical monitoring of groundwaters (1998−2001) at Vesuvius volcano (Italy)[J]. Journal of Volcanology and Geothermal Research, 2004, 133: 81-104. doi: 10.1016/S0377-0273(03)00392-5
    [40] Abascal E, Gómez-Coma L, Ortiz I, Ortiz A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies[J]. Science of the Total Environment, 2022, 810: 152233. doi: 10.1016/j.scitotenv.2021.152233
    [41] Cuoco E, Darrah T H, Buono G, Verrengia G, De Francesco S, Eymold W K, Tedesco D. Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey[J]. Environmental Monitoring and Assessment, 2015, 187(2): 46. doi: 10.1007/s10661-015-4307-y
    [42] Subramani T, Rajmohan N, Elango L. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India[J]. Environmental Monitoring and Assessment, 2010, 162(1-4): 123-137. doi: 10.1007/s10661-009-0781-4
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  14
  • HTML浏览量:  3
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-01
  • 录用日期:  2024-12-23
  • 修回日期:  2024-12-23
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回