• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同水体在大气环境中对碳酸盐岩溶蚀过程及溶解无机碳δ13C演变规律

赵光帅 朱义年 谢银财 沈利娜 吴华英 李腾芳 黄奇波

赵光帅,朱义年,谢银财,等. 不同水体在大气环境中对碳酸盐岩溶蚀过程及溶解无机碳δ13C演变规律[J]. 中国岩溶,2025,44(1):124-135, 146 doi: 10.11932/karst20250109
引用本文: 赵光帅,朱义年,谢银财,等. 不同水体在大气环境中对碳酸盐岩溶蚀过程及溶解无机碳δ13C演变规律[J]. 中国岩溶,2025,44(1):124-135, 146 doi: 10.11932/karst20250109
ZHAO Guangshuai, ZHU Yinian, XIE Yincai, SHEN Lina, WU Huaying, LI Tengfang, HUANG Qibo. Dissolution process of carbonate rocks by different types of water in atmospheric environment and δ13C evolution of dissolved inorganic carbon[J]. CARSOLOGICA SINICA, 2025, 44(1): 124-135, 146. doi: 10.11932/karst20250109
Citation: ZHAO Guangshuai, ZHU Yinian, XIE Yincai, SHEN Lina, WU Huaying, LI Tengfang, HUANG Qibo. Dissolution process of carbonate rocks by different types of water in atmospheric environment and δ13C evolution of dissolved inorganic carbon[J]. CARSOLOGICA SINICA, 2025, 44(1): 124-135, 146. doi: 10.11932/karst20250109

不同水体在大气环境中对碳酸盐岩溶蚀过程及溶解无机碳δ13C演变规律

doi: 10.11932/karst20250109
基金项目: 国家自然科学基金联合基金(U21A2041);广西自然科学基金面上项目(2025GXNSFAA069711, 2025GXNSFAA069865);中央引导地方专项(XZ202301YD0005C);国家自然科学基金(42372294);中国地质调查局地质调查项目(DD20230081)
详细信息
    作者简介:

    赵光帅(1989-),男,博士,主要从事岩溶环境地球化学与气候变化研究。E-mail:zgskarst@163.com

    通讯作者:

    吴华英(1983-),女,博士,研究方向:岩溶水文地质。E-mail:wuhuaying@mail.cgs.gov.cn

  • 中图分类号: P641.3

Dissolution process of carbonate rocks by different types of water in atmospheric environment and δ13C evolution of dissolved inorganic carbon

  • 摘要: 碳酸盐岩溶解是一种发生在地球浅表层环境下的特殊地质过程,因其地球化学过程具有低温性、开放性、敏感性和生物参与性等特点,导致岩溶水体溶解无机碳(DIC)浓度及其稳定碳同位素(δ13CDIC)值的多变性。本研究开展大气开放环境中不同水体浸泡碳酸盐岩试片实验,探究大气降水、降水流经岩溶土壤及进入碳酸盐岩含水层再出露地表后对碳酸盐岩溶蚀的影响及δ13CDIC的演变规律。结果表明降水及降水在土壤中渗流再出露地表后,即使无水生光合植物和土壤CO2的持续输入,其对碳酸盐岩仍具有较强的溶蚀作用,而相同条件下岩溶管道/裂隙水出露地表后对碳酸盐岩溶蚀作用微弱或不溶蚀。在无水生光合植物和土壤CO2持续输入的大气开放系统水体中,当${\rm{SO}}_4^{2-}$>29 mg∙L−1或${\rm{NO}}_3^{-}$>50 mg∙L−1时,${\rm{SO}}_4^{2-}$、${\rm{NO}}_3^{-}$产生的盐效应和与阳离子形成的离子对作用可显著提高方解石溶解度,促进方解石溶解。土壤渗流水和岩溶管道/裂隙水出露地表后水中CO2在数小时内即可完成脱气作用,并使水体δ13CDIC值显著增重,增幅可达+10.98‰。

     

  • 图  1  研究区位置及采样点周边环境(a-研究区位置;b-S31下降泉;c-S54表层岩溶泉;d-CF2钻孔;e-土壤采样点)

    Figure  1.  Location of the study area and the surrounding environment of sampling points (a:location of the study area; b:S31 spring; c:S54 epikarst spring; d:CF2 borehole; e:soil sampling point)

    图  2  动态浸泡实验装置

    Figure  2.  Dynamic soak experimental device

    1  动态浸泡实验

    1.  Dynamic soak experimental

    图  3  不同类型浸泡液中岩石试片质量差值

    Figure  3.  Quality differences of rock tablets in various types of soaking solutions

    图  4  不同类型浸泡液中主要水化学指标变化特征

    Figure  4.  Characteristics of changes in major hydrochemical indexes in various types of soaking solutions

    图  5  不同类型浸泡液中δ13CDIC变化特征

    Figure  5.  Characteristics of changes in δ13CDIC in various types of soaking solutions

    图  6  不同类型浸泡液中方解石饱和指数变化特征

    Figure  6.  Characteristics of changes in calcite saturation indexes in various types of soaking solutions

    图  7  不同类型浸泡液中主要水化学指标与试片质量差关系(除初始浸泡液;a-Ca2+与试片质量差;b-${\rm{HCO}}_3^{-}$与试片质量差;c- pCO2与试片质量差;d-电导率与试片质量差)

    Figure  7.  Relationship between major hydrochemical indexes of the soaking solutions and quality difference of rock tablets. (Except for the initial soaking solution; a: Ca2+ vs. quality difference of rock tablets; b: ${\rm{HCO}}_3^{-}$ vs. quality difference of rock tablets; c: pCO2 vs. quality difference of rock tablets; d: conductivity vs. quality difference of rock tablets)

    图  8  浸泡液中${\rm{SO}}_4^{2-}$、${\rm{NO}}_3^{-}$与方解石SI关系

    Figure  8.  Relationship between ${\rm{SO}}_4^{2-}$, ${\rm{NO}}_3^{-}$ and calcite saturation index in soaking solutions

    图  9  浸泡液中${\rm{SO}}_4^{2-}$、${\rm{NO}}_3^{-}$与试片质量差值关系

    Figure  9.  Relationship between ${\rm{SO}}_4^{2-}$, ${\rm{NO}}_3^{-}$ and quality difference of rock tablets in soaking solutions

    图  10  各端元对浸泡液中DIC贡献的变化趋势

    Figure  10.  Change trend of the contributions of various sources to DIC in soaking solutions

    表  1  桂林丫吉试验场坡面土壤主要理化指标含量

    Table  1.   Contents of major physicochemical indicators in the slope soil of Yaji Experimental Site

    深度/cm pH 容重/
    g∙cm−3
    含水率/% 水溶性盐总量/
    mg∙kg−1
    阳离子交换量/
    cmol∙kg−1
    碳酸钙/
    g∙kg−1
    有机质/
    g∙kg−1
    δ13C有机碳/‰ δ13C无机碳/‰
    0~10 6.66 1.18 29.8 100 30.5 5.97 72.6 −21.36 −13.45
    10~20 6.34 1.02 31.2 120 30.4 9.36 55.9 −19.24 −12.88
    20~30 6.42 0.93 32.7 190 30.4 11.4 45.2 −17.03 −16.22
    下载: 导出CSV

    表  2  岩石试片尺寸及主要化学成分

    Table  2.   Sizes and major chemical components of rock tablets

    试片岩性 采样点 形状 直径/mm 高度/mm 表面积/cm2 CaO MgO CO2 酸不溶物
    质量分数/%
    灰岩 桂林市七星岩 圆饼状 40 3 28.9 55.69 0.42 42.97 0.67
    下载: 导出CSV

    表  3  浸泡液水化学指标检测结果统计

    Table  3.   Statistics of testing results of water chemical indexes in soaking solutions

    浸泡液
    类型
    pH Ca2+ Mg2+ K+ Na+ ${\rm{HCO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ ${\rm{NO}}_3^{-}$ Cl 电导率 pCO2 δ13CDIC
    mg·L−1 us·cm−1 ppmv
    L10
    (n=9)
    最大值 8.07 51.80 17.48 6.02 2.46 149.00 36.50 76.30 6.54 407.00 7709 −3.18
    最小值 7.20 37.81 15.10 4.69 1.38 108.69 31.84 / 4.58 326.00 931 −16.64
    平均值 7.59 46.52 16.06 5.09 1.74 124.68 33.29 5.01 378.56 3281 −10.63
    标准差 0.30 4.39 0.87 0.50 0.38 11.89 1.55 0.61 25.43 2152 4.60
    变异系数 3.95 9.43 5.40 9.76 21.74 9.54 4.67 12.19 6.72 66 −43.28
    L20
    (n=9)
    最大值 7.74 56.36 18.55 3.58 2.97 243.96 7.38 119.72 7.86 449.50 12749 −3.97
    最小值 6.88 50.72 17.45 3.11 2.56 134.18 6.41 / 7.23 329.00 4121 −13.35
    平均值 7.19 53.56 17.84 3.34 2.78 153.27 6.76 7.51 388.33 6982 −8.56
    标准差 0.30 2.16 0.39 0.13 0.13 34.58 0.35 0.19 33.10 2481 3.00
    变异系数 4.13 4.02 2.16 3.99 4.80 22.56 5.13 2.55 8.52 36 −35.11
    L30
    (n=9)
    最大值 7.76 64.70 23.34 1.40 2.72 231.78 9.56 164.67 9.64 539.00 16749 −5.05
    最小值 7.17 52.57 21.46 0.94 1.97 105.73 7.65 0.19 8.60 421.00 3499 −18.21
    平均值 7.41 57.68 22.28 1.07 2.17 147.52 8.43 107.26 8.89 480.39 6963 −10.19
    标准差 0.21 5.05 0.57 0.14 0.23 41.28 0.55 68.79 0.31 42.66 3928 4.58
    变异系数 2.78 8.75 2.57 13.35 10.56 27.98 6.55 64.13 3.54 8.88 56 −44.94
    CP
    (n=9)
    最大值 7.98 24.43 0.14 0.13 0.47 72.90 2.13 1.76 0.83 114.00 1919 −3.11
    最小值 7.22 3.42 0.04 0.09 / 3.67 1.70 1.11 0.46 9.89 114 −12.66
    平均值 7.54 13.84 0.08 0.11 41.07 1.93 1.58 0.73 65.49 1092 −6.18
    标准差 0.30 8.41 0.04 0.01 26.00 0.15 0.26 0.12 40.16 615 3.13
    变异系数 3.93 60.77 46.95 12.90 63.29 8.01 16.51 16.70 61.33 56 −50.65
    CS54
    (n=9)
    最大值 7.94 92.31 0.61 0.15 0.82 238.81 10.16 38.75 3.03 432.00 3648 −3.27
    最小值 7.55 39.31 0.41 0.03 0.04 73.48 7.04 35.87 2.65 195.00 904 −16.42
    平均值 7.80 59.62 0.46 0.10 0.45 135.38 7.91 37.98 2.87 288.67 2050 −9.13
    标准差 0.13 20.54 0.06 0.03 0.27 66.03 0.89 0.98 0.15 89.99 992 5.57
    变异系数 1.65 34.44 13.36 35.13 60.51 48.77 11.24 2.59 5.41 31.18 48 −60.99
    CS31
    (n=9)
    最大值 7.96 89.76 0.77 0.33 0.92 238.81 10.57 30.45 2.72 412.00 5070 −3.38
    最小值 7.64 38.89 0.61 0.05 / 77.15 6.19 29.36 2.29 189.40 959 −16.11
    平均值 7.81 58.69 0.66 0.17 141.53 7.25 30.10 2.57 280.38 2221 −9.18
    标准差 0.10 19.95 0.06 0.09 63.50 1.36 0.33 0.14 85.87 1432 5.27
    变异系数 1.28 34.00 9.06 54.99 44.87 18.78 1.08 5.42 30.63 64 −57.37
    CCF2
    (n=9)
    最大值 7.96 98.43 0.65 0.38 1.07 283.82 11.60 14.54 2.94 441.00 10965 −2.51
    最小值 7.38 31.74 0.40 0.21 0.14 73.48 7.52 11.01 2.57 154.10 809 −16.09
    平均值 7.75 56.90 0.46 0.30 0.54 149.75 8.63 13.88 2.78 264.88 3146 −9.05
    标准差 0.17 23.99 0.08 0.05 0.30 76.11 1.43 1.25 0.13 103.25 3230 4.96
    变异系数 2.21 42.17 17.92 18.21 55.19 50.82 16.55 9.02 4.84 38.98 103 −54.81
    下载: 导出CSV
  • [1] Goldscheider N, Chen Z, Auler A S, Bakalowicz M, Broda S, Drew D, Hartmann J, Jiang G, Moosdorf N, Stevanovic Z, Veni G. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28: 1661-1677.
    [2] Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, Li Q, Wu L, Chen F, Li C, Deng Y, Yang Y, Xi H. Global CO2 consumption by silicate rock chemical weathering: Its past and future[J]. Earth's Future, 2021, 9: e2020EF001938.
    [3] Dreybrodt W, Buhmann D, Michaelis J, Usdowski E. Geochemically controlled calcite precipitation by CO2-outgassing: Field measurements of precipitation rates in comparison to theoretical predictions[J]. Carsologica Sinica, 1992, S1: 9-24.
    [4] 刘再华, Dreybrodt W. 方解石沉积速率控制的物理化学机制及其古环境重建意义[J]. 中国岩溶, 2002, 21(4):252-257. doi: 10.3969/j.issn.1001-4810.2002.04.004

    LIU Zaihua, Dreybrodt W. Physicochemical mechanisms of rate-determining of calcite deposition and their implications for paleo-environmental reconstruction[J]. Carsologica Sinica, 2002, 21(4): 252-257. doi: 10.3969/j.issn.1001-4810.2002.04.004
    [5] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005

    YAN Zhiwei. Influences of ${\rm{SO}}_4^{2-}$ on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1): 24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005
    [6] Jiang Y J, Hu Y J, Schirmer M. Biogeochemical controls on daily cycling of hydrochemistry and δ13C of dissolved inorganic carbon in a karst spring-fed pool[J]. Journal of Hydrology, 2013, 478: 157-168. doi: 10.1016/j.jhydrol.2012.12.001
    [7] Pu J B, Li J H, Khadka M B, Martin J B, Zhang T, Yu S, Yuan D. In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream[J]. Science of the Total Environment, 2017, 579: 1343-1355. doi: 10.1016/j.scitotenv.2016.11.132
    [8] Zhang T, Li J H, Pu J B, Martin J B, Khadka M B, Wu F, Li L, Jiang F, Huang S, Yuan D. River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China[J]. Science of the Total Environment, 2017, 609: 92-101. doi: 10.1016/j.scitotenv.2017.07.143
    [9] Omelon C R, Pollard W H, Andersen D T. A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic[J]. Applied Geochemistry, 2006, 21: 1-15. doi: 10.1016/j.apgeochem.2005.08.004
    [10] 周小萍, 蓝家程, 张笑微, 徐尚全. 岩溶溪流的脱气作用及碳酸钙沉积: 以重庆市南川区柏树湾泉溪流为例[J]. 沉积学报, 2013, 31(6):1014-1021.

    ZHOU Xiaoping, LAN Jiacheng, ZHANG Xiaowei, XU Shangquan. CO2 outgassing and precipitation of calcium carbonate in a karst stream: A case study of Baishuwan spring in Nanchuan, Chongqing[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1014-1021.
    [11] 章程, 肖琼. 桂林漓江水体溶解无机碳迁移与水生光合碳固定研究[J]. 中国岩溶, 2021, 40(4):555-564.

    ZHANG Cheng, XIAO Qiong. Study on dissolved inorganic carbon migration and aquatic photosynthesis sequestration in Lijiang River, Guilin[J]. Carsologica Sinica, 2021, 40(4): 555-564.
    [12] 袁道先, 刘再华, 林玉石, 等. 中国岩溶动力系统[M]. 北京: 地质出版社, 2002:1−275.

    YUAN Daoxian, LIU Zaihua, LIN Yushi, et al. Karst dynamic systems of China[M]. Beijing: Geology Press, 2002:1−275.
    [13] Li W, Yu L J, Yuan D X, Xu H B, Yang Y. Bacteria biomass and carbonic anhydrase activity in some karst areas of southwest China[J]. Journal of Asian Earth Sciences, 2004, 24: 145-152. doi: 10.1016/j.jseaes.2003.10.008
    [14] Zhang C, Yuan D X, Cao J H. Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005, 47: 615-619. doi: 10.1007/s00254-004-1186-x
    [15] 章程, 袁道先. IGCP448: 岩溶生态系统全球对比研究进展[J]. 中国岩溶, 2005, 24(1):83-88.

    ZHANG Cheng, YUAN Daoxian. IGCP448: Progresses of world correlation of karst ecosystem[J]. Carsologica Sinica, 2005, 24(1): 83-88.
    [16] 黄奇波, 吴华英, 程瑞瑞, 李腾芳, 罗飞, 赵光帅, 李小盼. 桂林岩溶区石灰土壤对酸雨缓冲作用的观测及其对岩溶碳汇的指示意义[J]. 地球学报, 2022, 43(4): 461−471.

    HUANG Qibo, WU Huaying, CHENG Ruirui, LI Tengfang, LUO Fei, ZHAO Guangshuai, LI Xiaopan. Buffering effect of lime soil on acid rain and its influence on the evaluation of the karst carbon sink effect. Acta Geoscientica Sinica, 2022, 43(4): 461−471.
    [17] 赵光帅, 黄奇波, 朱义年, 李腾芳, 普政功. 石灰土对硫酸型酸雨缓冲过程模拟及碳汇效应研究[J]. 中国岩溶, 2022, 41(5):796-807. doi: 10.11932/karst20220504

    ZHAO Guangshuai, HUANG Qibo, ZHU Yinian, LI Tengfang, PU Zhenggong. Simulation of buffering process and carbon sink effect of lime soil on sulfuric acid rain[J]. Carsologica Sinica, 2022, 41(5): 796-807. doi: 10.11932/karst20220504
    [18] Zhao G, Huang Q, Zhu Y, Xu Y, Pu Z. Simulation of the buffering process of karst soil on sulfuric acid rain and the characteristic of δ13CDIC and the carbon sink flux in Guilin City, southwest China[J]. Environmental Earth Sciences, 2023, 82: 296. doi: 10.1007/s12665-023-10948-6
    [19] Cuntz M. Carbon cycle: a dent in carbon's gold standard[J]. Nature, 2011, 477: 547-548. doi: 10.1038/477547a
    [20] Yang H, Zhou L, Huang L, Cao J, Groves C. A comparative study of soil carbon transfer between forest soils in subtropical karst and clasolite areas and the karst carbon sink effect in Guilin, Guangxi, China[J]. Environmental Earth Sciences, 2015, 74: 921-928. doi: 10.1007/s12665-014-3903-4
    [21] 闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1):7-10.

    YAN Zhiwei, LIU Huili, ZHANG Zhiwei. Influences of temperature and PCO2 on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2009, 28(1): 7-10.
    [22] Shin W J, Chung G S, Lee D, Lee K S. Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and δ13CDIC[J]. Hydrology and Earth System Sciences, 2011, 15: 2551-2560. doi: 10.5194/hess-15-2551-2011
    [23] Palmer S M, Hope D, Billett M F, Dawson J J C, Bryant C L. Sources of organic and inorganic carbon in a headwater stream: Evidence from carbon isotope studies[J]. Biogeochemistry, 2001, 52: 321-338. doi: 10.1023/A:1006447706565
    [24] Doctor D H, Kendall C, Sebestyen S D, Shanley J B, Ohte N, Boyer E W. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream[J]. Hydrological Processes, 2008, 22: 2410-2423. doi: 10.1002/hyp.6833
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  11
  • HTML浏览量:  2
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 录用日期:  2025-03-06
  • 修回日期:  2025-02-26
  • 刊出日期:  2025-02-25

目录

    /

    返回文章
    返回