Discussion on the formulas used to calculate the dissolution rate by the rock tablet method
-
摘要: 测算碳酸盐岩的溶蚀速率对研究岩溶发育规律和提高岩溶碳汇估算精度至关重要。溶蚀试片法是得到广泛认可和使用的计算研究区碳酸盐岩溶蚀速率的方法,但目前利用其计算溶蚀速率的公式却并不统一,还存在日溶蚀量和年溶蚀量计算错误、时间尺度外推过大、单位不统一等问题。文章对溶蚀试片法的起源与方法原理进行了简要介绍,并就当前利用溶蚀试片法测算溶蚀速率的部分已发表公式进行了分析,发现相关公式存在忽略试验时间长度、日溶蚀量与年溶蚀量转换系数(方法)错误、短期试验结果进行了长时间尺度外推等问题,导致溶蚀速率测算误差较大,区域间无法进行对比。基于溶蚀试片法的基本原理,本文提出了用溶蚀试片法测算溶蚀速率的建议公式,以期进一步提高就溶蚀试片法测算溶蚀速率的规范性及结果的可对比性,从而为提高岩溶碳汇估算精度提供数据支持。Abstract:
The dissolution rate of carbonate rocks is an important parameter for investigating the karst carbon cycle and evaluating the carbon sink effect; as well as a key indicator for studying karst development and karst hydrogeological problems. The rock tablet method is currently one of the main methods for quantitatively evaluating karstification and its carbon sink intensity, and has been widely recognized and used. The rock tablet method can not only analyze the factors affecting the dissolution rate of carbonate rocks (e.g., climate, lithology, soil properties), but also further explore the temporal and spatial variation characteristics of subsurface karstification by burying carbonate rock tablets at different depths. However, in current studies related to the calculation of carbonate dissolution rates using the rock tablet method, there are different versions of the dissolution rate calculation formula, and there are still some problems in its application, resulting in significant differences in the dissolution rate values calculated using different formulas for the same monitoring data, which adversely affects the accurate determination of the regional dissolution process and assessment of the karst carbon sink effect. This study firstly reviewed the origin, operational procedure, and basic principles of the carbonate rock tablet method and clarified the key links such as the preparation of the rock tablets (the standard rock tablets were uniformly made of limestone in the same stratum, usually the Rongxian formation of the upper Devonian collected from Guilin in Guangxi, or the upper Cretaceous collected from Slovenia, with a diameter of 4 cm and a thickness of 3mm to5 mm), burial layers (in the air, on the surface, and at the soil depths of 20 cm and 50 cm), burial duration (typically corresponding to one hydrological year), and weighing (using a balance with one-millionth precision). The advantages and limitations of commonly used carbonate dissolution rate calculation methods are summarized. Then, the paper analyzed some of the published formulas for calculating the carbonate dissolution rate using the rock tablet method and discovered that some of the formulas have the following issues,(1) The coefficient (method) from the daily dissolution rate to the annual dissolution rate is incorrect, further intensifying the uncertainty of the results; (2) The short-term test results were extrapolated over a long time scale, disregarding the influence of the dynamic changes in environmental conditions on the carbonate dissolution rate; (3) Unit conversion errors. These problems can result in significant calculation errors in the carbonate dissolution rate and make it difficult to conduct comparisons among regions. Finally, based on the fundamental principle of the rock tablet method, this study proposes a suggested formula for calculating the carbonate dissolution rate using the rock tablet method. The suggested formula can further enhance the standardization of the carbonate dissolution rate using the rock tablet method, providing data support for conducting global analysis and comparative research, revealing the laws of karst development, and improving the accuracy of karst carbon sink estimation. This study also proposes that methods should be selected based on the characteristics of the study area and research purpose. At the same time, it is of great necessity to strengthen the correlations between various test methods. -
Key words:
- carbonate rock /
- rock tablets method /
- dissolution rate /
- karst /
- problem discussion
-
表 1 常用溶蚀速率测算方法的特点
Table 1. Characteristics of commonly used methods for measuring dissolution rates
方法 优点 缺点 溶蚀试片法 不需要长期监测;埋放方法成熟;接近自然状态;
影响因子可控;试验成本低难以获得历史数据;需多个代表性测试点;
时间分辨率不高;动态变化不易掌握微侵蚀计法 应用范围广;相对短时间内获得数据;限制条件少 难以获得历史数据;不适合大尺度区域研究 水化学法 可得出流域溶蚀速率;适合较大尺度区域研究 所需数据量较大 宇宙成因核素法 应用范围广;可估算长时间尺度数据 测试成本较高;精确度有待提升 灰岩基座法 原理简单;可估算长时间尺度数据 存在地域限制;误差较大 表 2 利用溶蚀试片法计算溶蚀速率的公式
Table 2. Formulas used to calculate dissolution rates using rock tablets
公式 注释 问题 出处 $ d=\dfrac{\left ({G}_{0}-{G}_{1}\right)}{A\times 2.71} $ $ d $:溶蚀速率/mm
$ {G}_{0}、{G}_{1} $:试验前后试片重量/mg
$ A $:试样的表面积/mm2
$ 2.71 $:石灰岩比重/mg·mm−3缺少试验时间,不利于对比研究 [44] $ W=\dfrac{wm}{mt}\times 365;v=\dfrac{w}{d}; h=\dfrac{v}{a} $ $ W $:年损失量/g
$ wm $:试片重量损失/g
$ mt $:代表测量的时间/d
$ v $:损失体积/cm3
$ d $:密度/g.cm−3
$ h $:岩石剥蚀厚度/cm·yr−1
$ a $:试片表面积/cm2无误,单位面积溶蚀量可据此转换为剥蚀厚度 [47] $ Sr=\dfrac{\left ({W}_{2}-{W}_{1}\right)}{2.7A·t} $ $ Sr $:溶蚀速率/mm·ka−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量
$ t $:试验时间
$ A $:试样的表面积/mm2
$ 2.7 $:石灰岩比重/g·cm−3式中$ Sr $应为mm·a−1 [11] $ ER=\left ({W}_{1}-{W}_{2}\right)\times 1000\times T/365/S $ $ ER $:溶蚀速率/mg·cm−2·a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ T $:埋放时间/d
$ S $:试片表面积/cm−2误将试片绝对溶蚀量与埋放时间相乘;日溶蚀速率转换为年溶蚀速率计算错误 [14, 67−68] $ ER=\left ({W}_{1}-{W}_{2}\right)\times {10}^{7}/T/S $ $ ER $:溶蚀速率/mg·m−2·d−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ {W}_{1}-{W}_{2} $:绝对溶蚀量/mg
$ T $:埋放天数/d
$ S $:试片表面积/cm2无误 [36, 54, 56−57, 69−71] $ ER=\left ({W}_{1}-{W}_{2}\right)\times 1000\times 365/\left (T\times S\right) $ $ ER $:溶蚀速率/mg·cm−2·a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ {W}_{1}-{W}_{2} $:试片绝对溶蚀量/g
$ T $:埋放时间
$ S $:试片表面积/cm2无误 [58, 72] $ ER=\left ({W}_{1}-{W}_{2}\right)\times 1000\times T\times {365}^{-1}\times {S}^{-1} $ $ ER $:溶蚀速率/mg·cm−2·a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ T $:埋放时间/d
$ S $:试片表面积/cm2误将试片绝对溶蚀量与埋放时间相乘;日溶蚀速率转换为年溶蚀速率计算错误 [12, 18, 20, 60, 73−74] $ E=\left ({W}_{1}-{W}_{2}\right)/S $ $ E $:溶蚀速率/g·cm−2·a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ {W}_{1}-{W}_{2} $:试片绝对溶蚀量/g
$ S $:溶蚀试片的表面积/cm−2省略了溶蚀时间,易造成误导 [75] $ D=\left ({W}_{1}-{W}_{2}\right)\times 1000\times {S}^{-1} $ $ D $:喀斯特溶蚀量/mg·cm−2
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ S $:试片表面积/cm2省略了溶蚀时间,易造成误导 [76] $ R=\dfrac{\left ({W}_{1}-{W}_{2}\right)\times T}{365\times S} $ $ R $:溶蚀速率/mg·cm−2· a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/mg
$ T $:埋放时间/d
$ S $:试片表面积/cm2误将试片绝对溶蚀量与埋放时间相乘;日溶蚀速率转换为年溶蚀速率计算错误 [7, 62, 77] $ ER=\dfrac{{W}_{1}-{W}_{2}}{T·S} $ $ ER $:溶蚀速率/mg·cm−2·a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/mg
$ T $:溶蚀时间/a
$ S $:试片表面积/cm2无误 [21, 78−79] $ ER=\left ({W}_{1}-{W}_{2}\right)\times 10000/\left (T\times S\right) $ $ ER $:溶蚀速率/mg·m−2·d−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/mg
$ T $:埋放天数/d
$ S $:试片表面积/cm2无误 [38] $ RS=3.65\times {10}^{10}n\left ({W}_{1}-{W}_{2}\right)/\left (A\times T\right) $ $ RS $:碳酸盐岩溶蚀或碳汇强度/mol·km−2·a−1
$ n $:试片中碳酸盐的含量
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ T $:埋放时间/d
$ A $:试片表面积/cm2日溶蚀速率转换为年溶蚀速率计算错误 [28] $ E=365\times {10}^{4}\left ({W}_{1}-{W}_{2}\right)/\left (A\times T\right) $ $ E $:溶蚀量/g·km−2·a−1
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ T $:埋放时间/d
$ A $:试片表面积/cm2面积单位换算错误 [23] $ DR=\left (W1-W2\right)\times 1000\times T/S $ $ DR $:溶蚀速率/mg·a−1·cm−2
$ {W}_{1}、{W}_{2} $:试验前后试片重量/g
$ T $:埋放时间/a
$ S $:试片表面积/cm2误将试片绝对溶蚀量与埋放时间相乘 [80] -
[1] Ciais P, Sabine C, Bala G, Bopp L, Brobkin V, House J I. Carbon and other biogeochemical cycles [M]. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change. Cambridge University Press. 2014: 465-570. [2] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10):1081-1090.PU Junbing, JIANG Zhongcheng, YUAN Daoxian, ZHANG Cheng. Some opinions on Rock-Weathering-Related Carbon Sinks from the IPCC Fifth Assessment Report[J]. Advances in Earth Science, 2015, 30(10): 1081-1090. [3] 蒋忠诚, 覃小群, 曹建华, 蒋小珍, 何师意, 罗为群. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011, 30(4):363-367.JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, JIANG Xiaozhen, HE Shiyi, LUO Weiqun. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 2011, 30(4): 363-367. [4] 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19(4):3-10.LIU Zaihua. Cantribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Carsologica Sinica, 2000, 19(4): 3-10. [5] Krklec K, Domínguez-Villar D, Perica D. Use of rock tablet method to measure rock weathering and landscape denudation[J]. Earth-Science Reviews, 2021, 212: 103449. doi: 10.1016/j.earscirev.2020.103449 [6] 王兴山, 张捷, 秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4):447-454.WANG Xingshan, ZHANG Jie, QIN Zhong. Methods for measuring erosion rate of rock: An overview[J]. Advamces in Earth Science, 2013, 28(4): 447-454. [7] 郭静芸, 毕鑫涛, 方然可, 李守定. 可溶岩化学溶蚀试验方法研究综述[J]. 水文地质工程地质, 2020, 47(4):24-34.GUO Jingyun, BI Xintao, FANG Ranke, LI Shouding. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 24-34. [8] 中华人民共和国自然资源部. 岩溶碳循环调查与碳汇效应评价指南[S]. DZ/T 0375-2021. [9] 中国地质科学院岩溶地质研究所. 流域尺度岩溶碳循环监测及固碳增汇技术要求[S]. 20180957-T-334. [10] 徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J]. 科学通报, 1997, 42(9):953-956. doi: 10.1360/csb1997-42-9-953XU Shengyou, JIANG Zhongcheng. Preliminary estimation of the relationship between karstification and the source sink of atmospheric greenhouse gas CO2 in China[J]. Chinese Science Bulletin, 1997, 42(9): 953-956. doi: 10.1360/csb1997-42-9-953 [11] 章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 2002, 76(4):566-570.ZHANG Dian, SHI Changxing. CO2 partial pressure, karst dissolution rate and karst micro-landforms on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2002, 76(4): 566-570. [12] 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素: 以重庆金佛山为例[J]. 地质论评, 2010, 56(1):136-140.ZHANG Cheng. Seasonal variation of dissolution rate under the soil at different land uses and its influence factors: A case study of Jinfo Mountain, Chongqing[J]. Geological Review, 2010, 56(1): 136-140. [13] 章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26):2174-2180. doi: 10.1360/csb2011-56-26-2174ZHANG Cheng. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Sci Bull, 2011, 56(26): 2174-2180. doi: 10.1360/csb2011-56-26-2174 [14] 章程, 谢运球, 吕勇, 蒋勇军, 曹建华, 姜光辉, 杨平恒, 王冬银. 不同土地利用方式对岩溶作用的影响: 以广西弄拉峰丛洼地岩溶系统为例[J]. 地理学报, 2006, 61(11):1181-1188.ZHANG Cheng, XIE Yunqiu, LU Yong, JIANG Yongjun, CAO Jianhua, JIANG Guanghui, YANG Pingheng, WANG Dongyin. Impact of land-use patterns upon karst processes: Taking Nongla Fengcong depression area in Guangxi as an example[J]. Acta Geographica Sinica, 2006, 61(11): 1181-1188. [15] 陈如冰, 罗明明, 罗朝晖, 陈植华, 周宏. 三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J]. 中国岩溶, 2019, 38(2):258-264.CHEN Rubing, LUO Mingming, LUO Zhaohui, CHEN Zhihua, ZHOU Hong. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges Area[J]. Carsologica Sinica, 2019, 38(2): 258-264. [16] 龚自珍, 黄庆达. 碳酸盐岩岩块野外溶蚀速度试验[J]. 中国岩溶, 1984, 3(2):17-26.GONG Zizhen, HUANG Qingda. Field corrosion rate tests on carbonate rocks[J]. Carsologica Sinica, 1984, 3(2): 17-26. [17] 唐健生, 夏日元, 邹胜章, 梁彬. 塔里木盆地西北缘野外溶蚀试验研究[J]. 中国岩溶, 2004, 23(3):68-71.TANG Jiansheng, XIA Riyuan, ZOU Shengzhang, LIANG Bin. Experimental study on the field corrosion on the northwest verge of Tarim basin[J]. Carsologica Sinica, 2004, 23(3): 68-71 [18] 章程, 李玉辉, 汪进良, 苗迎, 肖琼, 郭永丽. 云南石林地质公园土岩、土根界面过程和土下溶蚀速率[J]. 地质论评, 2020, 66(4):1019-1030.ZHANG Cheng, LI Yuhui, WANG Jinliang, MIAO Ying, XIAO Qiong, GUO Yongli. Interface processes at soil-rock, soil-root contacts and subsoil dissolution rate in Shilin Geopark, Yunnan[J]. Geological Review, 2020, 66(4): 1019-1030. [19] 刘宏, 吴文青. 路南石林现代喀斯特溶蚀速率研究[J]. 云南地理环境研究, 1998, 10(Supp.1):114-121.LIU Hong, WU Wenqing. Study on dissolution rate of modern karst in Lunan Stone Forest[J]. Yunnan Geographic Environment Research, 1998, 10(Supp.1): 114-121. [20] 侯满福, 刘雨婷, 张杰, 贺露炎, 梁江弈. 亚热带岩溶森林类型和坡位对碳酸盐岩溶蚀的影响[J]. 中国岩溶, 2023, 42(4):842-852.HOU Manfu, LIU Yuting, ZHANG Jie, HE Luyan, LIANG Jiangyi. Influence of forest types and slope positions on dissolution rate of carbonate rock in karst area in subtropical China[J]. Carsologica Sinica, 2023, 42(4): 842-852. [21] 龙健, 吴求生, 李娟, 廖洪凯, 刘灵飞, 黄博聪, 张菊梅. 贵州茂兰喀斯特森林不同小生境类型对岩石溶蚀的影响[J]. 土壤学报, 2021, 58(1):151-161.LONG Jian, WU Qiusheng, LI Juan, LIAO Hongkai, LIU Lingfei, HUANG Bocong, ZHANG Jumei. Effects of different microhabitat types on rock dissolution in Maolan karst forest, Southwest China[J]. Acta Pedologica Sinica, 2021, 58(1): 151-161. [22] 梁永平, 王维泰, 段光武. 鄂尔多斯盆地周边地区野外溶蚀试验结果讨论[J]. 中国岩溶, 2007, 26(4):315-320.LIANG Yongping, WANG Weitai, DUAN Guangwu. Discussion on the result of field corrosion test around Erdos Basin[J]. Carsologica Sinica, 2007, 26(4): 315-320. [23] 张春来, 黄芬, 蒲俊兵, 曹建华. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4):40-52.ZHANG Chunlai, HUANG Fen, PU Junbing, CAO Jianhua. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[J]. Geological Survey of China, 2021, 8(4): 40-52. [24] 吴孔运, 蒋忠诚, 叶晔. 不同植物群落对灰岩试块溶蚀速率的影响[J]. 吉林大学学报(地球科学版), 2007(5):967-971.WU Kongyun, JIANG Zhongcheng, YE Ye. Influence of different plant communities on erosion rates of limestone rock blocks[J]. Journal of Jilin University (Earth Science Edition), 2007(5): 967-971. [25] Spate A P, Jennings J N, Smith D I, Greenaway M. The micro-erosion meter: Use and limitations[J]. Earth Surface Processes and Landforms, 1985, 10(5): 427-440. doi: 10.1002/esp.3290100504 [26] Trudgill S T, Hign C J, Hanna F K. Improvements to the micro-erosion meter[J]. British Geomorphological Research Group, Technical Bulletin, 1981, 29: 3-17. [27] Corbel J. Erosion en terrain calcaire[J]. Annales de geographie, 1959, 68: 97-120. doi: 10.3406/geo.1959.16541 [28] 刘再华. 岩溶作用及其碳汇强度计算的“入渗-平衡化学法”: 兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4):379-382.LIU Zaihua. "Method of maximum potential dissolution" to calculated the intensity of karst process and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test[J]. Carsologica Sinica, 2011, 30(4): 379-382. [29] Matsushi Y, Sasa K, Takahashi T, Sueki K, Nagashima Y, Matsukura Y. Denudation rates of carbonate pinnacles in Japanese karst areas: Estimates from cosmogenic 36Cl in calcite[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8): 1205-1208. doi: 10.1016/j.nimb.2009.10.134 [30] 刘彧, 王世杰, 刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012, 27(4):386-397.LIU Yu, WANG Shijie, LIU Xiuming. New advance of cosmogenic nuclides dating in gechronology research[J]. Advances in Earth Science, 2012, 27(4): 386-397. [31] Bögli A. Karst Hydrology and Physical Speleology [M]. Berlin: Springer Verlag, 1980: 284. [32] Lauritzen S E. Autogenic and allogenic denudation in carbonate karst by the multiple basin method: an example from Svartisen, north Norway[J]. Earth Surface Processes and Landforms, 1990, 15(2): 157-167. doi: 10.1002/esp.3290150206 [33] Hanna F K. A technique for measuring the rate of erosion of cave passages[J]. Proceedings University of Bristol Spelaeology Society, 1966, 11: 83-86. [34] Trudgill S T, Viles H A, Inkpen R J, Moses C, Gosling W, Yate T, Collier P, Smith D I, Cooke R U. Twenty-year weathering remeasurements at St Paul's Cathedral, London[J]. Earth Surface Processes and Landforms, 2001, 26(10): 1129-1142. doi: 10.1002/esp.260 [35] 秦中, 张捷, 彭学艺, 王兴山. 四川乐山大佛风化的初步探讨[J]. 地理研究, 2005, 24(6):928-934.QIN Zhong, ZHANG Jie, PENG Xueyi, WANG Xingshan. A study on weathering processes of Leshan Grand Buddha, Sichuan, China[J]. Geographical Research, 2005, 24(6): 928-934. [36] 王文娟, 蓝芙宁, 蒋忠诚, 覃小群, 劳文科. 湖南大龙洞流域不同岩性不同土地利用类型条件下碳酸盐岩试片的溶蚀速率[J]. 中国岩溶, 2013, 32(1):29-33.WANG Wenjuan, LAN Funing, JIANG Zhongcheng, QIN Xiaoqun, LAO Wenke. Corrosion rate of carbonate tablet under diverse land use and lithology in the Dalongdong basin, Hunan[J]. Carsologica Sinica, 2013, 32(1): 29-33. [37] 张春潮, 李向全, 王振兴, 侯新伟, 桂春雷, 白占学, 付昌昌. 不同碳酸盐岩岩性试片的溶蚀速率研究: 以三姑泉域为例[J]. 水资源与水工程学报, 2018, 29(5):218-223.ZHANG Chunchao, LI Xiangquan, WANG Zhenxing, HOU Xinwei, GUI Chunlei, BAI Zhanxue, FU Changchang. Dissolution rate of different carbonate rocks: A case study in Sangu Spring Basin[J]. Journal of Water Resources & Water Engineering, 2018, 29(5): 218-223. [38] 张小琴, 罗维均, 王彦伟, 蔡先立, 吕伊娜, 王世杰. 岩溶试片的岩性差异对估算岩溶速率和碳通量的影响[J]. 中国岩溶, 2022, 41(3):477-487.ZHANG Xiaoqin, LUO Weijun, WANG Yanwei, CAI Xianli, LYU Yina, WANG Shijie. Effects of rock tablet lithology difference on estimation of rock dissolution rate and carbon flux[J]. Carsologica Sinica, 2022, 41(3): 477-487. [39] Galdenzi S. Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications[J]. International Journal of Speleology, 2012, 41(2): 149-159. doi: 10.5038/1827-806X.41.2.3 [40] Gams I. International comparative measurement of surface solution by means of standard limestone tablets [C]. Zbornik Ivana Rakovica. SAZU, Ljubljana, 1985: 361-386. [41] Krklec K, Domínguez-VillarI D, Carrasco R M, Pedraza J. Current denudation rates in dolostone karst from central Spain: Implications for the formation of unroofed caves [J]. Geomorphology, 2016, 264: 1-11. [42] Chevalier P. Erosion ou corrosion? Essai de controle du mode de creusement des reseaux souterrains[J]. Communications, 1er Congress Internationale Speleologique, 1953, Paris: 35-39. [43] Gams I. Poskus s ploščicami v Podpeški jami [M]. Naše jame 1959, 12: 76-77. [44] Rebek R. Poizkus merjenja korozije[J]. Naše jame, 1964, 6: 38-40. [45] Crabtree R W, Trudgill S T. Chemical denudation on a magnesian limestone hillslope, field evidence and implications for modelling[J]. Earth Surface Processes and Landforms, 1985, 10(4): 331-341. doi: 10.1002/esp.3290100405 [46] Crabtree R W, Trudgill S T. Hillslope solute sources and solutional denudation on a Magnesian Limestone hillslope[J]. Transactions of the Institute of British Geographers, 1987, 12(1): 97-106. doi: 10.2307/622580 [47] Trudgill S T. Measurements of erosional weight-loss of rock tablets[J]. Technical Bulletin (British Geomorphological Research Group), 1975, 17: 13-19. [48] Trudgill S T, Ferguson R I, Ball J, Crabtree R, Gent R. Ten year remeasurement of chemical denudation on a magnesian limestone hillslope[J]. Earth Surface Processes and Landforms, 1994, 19(2): 109-114. doi: 10.1002/esp.3290190203 [49] Gams I. International comparative study of limestone solution by means of standard tablets: first preliminary report [J].Nîmes, Association française de karstologie, Museum d’histoire naturelle, 1979:71-73. [50] Gams I. Comparative research of limestone solution by means of standard tablets [C]. 8th International Congress of Speleology. International Speleological Union, Bowling Green, Kentucky, USA, 1981: 273-275. [51] 袁道光, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988: 62-64. [52] C.托格, 袁道先. 溶蚀空间的形成及中国与世界其它地区碳酸盐岩近期溶蚀量的对比分析[J]. 中国岩溶, 1987, 6(2):42-47.Drogue C, YUAN Daoxian. Formation of karst cavities and comparison between carbonate rock dissolutio rates in China and some other parts of the world[J]. Carsologica Sinica, 1987, 6(2): 42-47. [53] 姚春芝, 高满, 陈喜, 刘秀强, 高峰钧. 基于元分析的碳酸盐岩侵蚀速率及其影响因素研究[J]. 地球与环境, 2023, 51(4):401-411.YAO Chunzhi, GAO Man, CHEN Xi, LIU Xiuqiang, GAO Fengjun. Meta-analysis of carbonate erosion rates and their influencing factors in karst areas[J]. Earth and Environment, 2023, 51(4): 401-411. [54] 王冬银, 谢世友, 章程. 典型岩溶区不同土地利用方式下雨季、旱季岩溶作用研究[J]. 生态环境学报, 2009, 18(6):2366-2372.WANG Dongyin, XIE Shiyou, ZHANG Cheng. Impact of landuse patterns upon karst processes in typical karst regions of Jinfo Mountain[J]. Ecology and Environmental Sciences, 2009, 18(6): 2366-2372. [55] 吴泽燕. 广西果化妙冠岩溶关键带碳汇效应研究 [D]. 武汉: 中国地质大学(武汉), 2021.WU Zeyan. Carbon sink effect of Miaoguang karst critical zone in Guohua, Guangxi [D]. Wuhan: China University of Geosciences (Wuhan), 2021. [56] 谢芳, 傅瓦利, 王晓阳, 蒲鹏, 张蕾, 谭波, 彭景涛, 甄晓君. 重庆中梁山碳酸盐岩溶蚀速率对季节的响应研究[J]. 中国岩溶, 2010, 29(4):410-413.XIE Fang, FU Wali, WANG Xiaoyang, PU Peng, ZHANG Lei, TAN Bo, PENG Jingtao, ZHEN Xiaojun. Study on response of carbonate rock dissolution rate to the season in Zhongliang Mountain, Chongqing[J]. Carsologica Sinica, 2010, 29(4): 410-413. [57] 刘文, 张强, 贾亚男. 夏季不同土地利用方式下的溶蚀作用研究: 以重庆青木关岩溶槽谷区为例[J]. 中国岩溶, 2012, 31(1):1-6.LIU Wen, ZHANG Qiang, JIA Ya'nan. Karstification under different land-use patterns in summer: A case study in the Qingmuguan karst velley, Chongqing[J]. Carsologica Sinica, 2012, 31(1): 1-6. [58] 罗怀良, 袁道先, 陈浩. 西南岩溶区农田生态系统岩溶作用及碳汇效应: 以重庆南川市三泉镇为例[J]. 地学前缘, 2011, 18(6):64-71.LUO Huailiang, YUAN Daoxian, CHEN Hao. Corrosion of limestone in farmland ecosystems and its carbon sink effect in the karst area of Southwest China: A case study in Sanquan Town, Nanchuan City, Chongqing Municipality[J]. Earth Science Frontiers, 2011, 18(6): 64-71. [59] 闫伟, 曾成, 肖时珍, 蓝家程, 代林玉, 邰治钦, 何江湖, 何春, 狄永宁. 湿润亚热带典型白云岩流域不同土地利用下的试片溶蚀速率及岩溶碳汇[J]. 地球与环境, 2021, 49(5):529-538.YAN Wei, ZENG Cheng, XIAO Shizhen, LAN Jiacheng, DAI Linyu, TAI Zhiqin, HE Jianghu, HE Chun, DI Yongning. Dissolution rate and karst carbon sink of different land use in typical dolomite watershed with humid subtropical weather[J]. Earth and Environment, 2021, 49(5): 529-538. [60] 黄奇波, 覃小群, 刘朋雨, 唐萍萍. 北方不同植被下土壤岩石试片的溶蚀速率及碳汇分析: 以山西汾阳地区为例[J]. 中国岩溶, 2013, 32(3):258-265.HUANG Qibo, QIN Xiaoqun, LIU Pengyu, TANG Pingping. Analysis on tablets dissolution rate and carbon sink under different vegetation in North China karst Area: A case study of Fenyang, Shaanxi Province[J]. Carsologica Sinica, 2013, 32(3): 258-265. [61] 蓝家程, 肖时珍, 杨龙, 敖向红, 肖华. 石漠化治理对岩溶作用强度的影响及其碳汇效应[J]. 水土保持学报, 2016, 30(3):244-249.LAN Jiacheng, XIAO Shizhen, YANG Long, AO Xianghong, XIAO Hua. Impact of rocky desertification treatment on karst carbonate rock dissolution rates and its carbon sink effect[J]. Journal of Soil and Water Conservation, 2016, 30(3): 244-249. [62] LUO Mingming, ZHOU Hong, LIANG Yongping, CHEN Zhihua, CHEN Rubing, LI Xinlong, Hamza Jakada, et al. Horizontal and vertical zoning of carbonate dissolution in China[J]. Geomorphology, 2018, 322: 66-75. doi: 10.1016/j.geomorph.2018.08.039 [63] 袁道先. 中国西南部的岩溶及其与华北岩溶的对比[J]. 第四纪研究, 1992(4):352-361.YUAN Daoxian. Karst in Southwest China and its comparison with karst in North China[J]. Quaternary Sciences, 1992(4): 352-361. [64] 徐胜友, 何师意. 碳酸盐岩土壤CO2的动态特征及其对溶蚀作用的驱动[J]. 中国岩溶, 1996, 15(Supp.1):50-57.XU Shengyou, HE Shiyi. The CO2 regime of soil profile and its drive to dissolution of carbonate rock[J]. Carsologica Sinica, 1996, 15(Supp.1): 50-57. [65] Matsukura Y, Hirose T. Five year measurements of rock tablet weathering on a forested hillslope in a humid temperate region[J]. Engineering Geology, 2000, 55: 259-266. [66] Plan L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps[J]. Geomorphology, 2005, 68: 201-212. doi: 10.1016/j.geomorph.2004.11.014 [67] 柯静, 邓艳, 岳祥飞, 梁锦桃, 李旭尧, 曹建华, 吴松. 典型岩溶断陷盆地溶蚀速率对海拔高度和土地利用方式的响应[J]. 地球学报, 2021, 42(3):407-416.KE Jing, DENG Yan, YUE Xiangfei, LIANG Jintao, LI Xuyao, CAO Jianhua, WU Song. The response of the karst dissolution rate to altitude and land use types in typical karst faulted basin[J]. Acta Geoscientica Sinica, 2021, 42(3): 407-416. [68] 黄静. 喀斯特地区不同土地利用类型土下溶蚀速率差异及其碳汇效应[D]. 贵州: 贵州师范大学, 2023.HUANG Jing. Difference of dissolution rate under different land use types in karst area and its carbon sink effect [D]. Guiyang: Guizhou Normal University, 2023. [69] 王冬银, 章程, 谢世友, 杨平恒, 张文晖. 亚高山不同植被类型区的雨季岩溶溶蚀速率研究[J]. 地球学报, 2007, 28(5):488-495.WANG Dongyin, ZHANG Cheng, XIE Shiyou, YANG Pingheng, ZHANG Wenhui. Karst dissolution rates of areas with different vegetation types in the sub-mountain region[J]. Acta Geoscientica Sinica, 2007, 28(5): 488-495. [70] 蓝家程, 傅瓦利, 彭景涛, 周小萍, 肖时珍, 袁波. 不同土地利用方式土下岩溶溶蚀速率及影响因素[J]. 生态学报, 2013, 33(10):3205-3212. doi: 10.5846/stxb201202290269LAN Jiacheng, FU Wali, PENG Jingtao, ZHOU Xiaoping, XIAO Shizhen, YUAN Bo. Dissolution rate under soil in karst areas and the influencing factors of different land use patterns[J]. Acta Ecologica Sinica, 2013, 33(10): 3205-3212. doi: 10.5846/stxb201202290269 [71] 甄晓君. 岩溶区不同土地利用方式下土壤容许侵蚀研究[D]. 重庆: 西南大学, 2009.ZHEN Xiaojun. Effects of different types of land use on soil loss tolerence in karst[D]. Chongqing: Southwest University, 2009. [72] 刘文, 徐聪聪, 于令芹, 李海翔, 卢茜茜, 朱钦锋, 柳浩然. 不同地质背景下北方岩溶作用强度研究[J]. 中国岩溶, 2023, 42(5):1-11.LIU Wen, XU Congcong, YU Lingqin, LI Haixiang, LU Qianqian, ZHU Qinfeng, LIU Haoran. Study on the intensity of boreal karstification under different geological conditions: A case study at the recharge area of Baotuquan Spring deainage area, Ji'nan, Northern China[J]. Carsologica Sinica, 2023, 42(5): 1-11. [73] 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1):240-246.HUANG Qibo, QIN Xiaoqun, LIU Pengyu, KANG Zhiqiang, TANG Pingping. Applicability of karst carbon sinks calculation methods in semi-arid climate environment[J]. Joural of Jilin University(Earth Science Edition), 2015, 45(1): 240-246. [74] 侯满福, 覃小群, 黄奇波, 邓艳, 刘朋雨. 半干旱岩溶区油松林显著促进碳酸盐岩溶蚀[J]. 地球学报, 2022, 43(4):472-482.HOU Manfu, QIN Xiaoqun, HUANG Qibo, DENG Yan, LIU Pengyu. Pinus tabuliformis forests in semi-arid areas significantly enhance carbonate rock dissolution[J]. Acta Geoscientica Sinica, 2022, 43(4): 472-482. [75] 曾成, 赵敏, 杨睿, 刘再华. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较: 以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1):106-111.ZENG Cheng, ZHAO Min, YANG Rui, LIU Zaihua. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and soluteload method: a case study in the Chenqi karst spring sysyem[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 106-111. [76] 李开忠, 徐中春, 吕小溪, 董颖苹, 王恒松. 基于野外控制试验的不同持续时间干旱对喀斯特溶蚀的影响研究[J]. 地理科学进展, 2021, 40(10):1704-1715. doi: 10.18306/dlkxjz.2021.10.008LI Kaizhong, XU Zhongchun, LYU Xiaoxi, DONG Yingping, WANG Hengsong. Quantifying the effect of drought with different durations on karst dissolution based on field control test[J]. Progress in Geography, 2021, 40(10): 1704-1715. doi: 10.18306/dlkxjz.2021.10.008 [77] 邵明玉. 黄土中碳酸盐矿物的溶蚀过程与碳汇效应研究[D]. 北京: 中国地质科学院, 2020.SHAO Mingyu. Study on dissolution process and carbon sink effect of carbonate minerals in loess[D]. Beijing: Chinese Academy of Geological Sciences, 2020. [78] 宋超, 刘长礼, 王俊坤, 张云, 侯宏冰. 施用牛粪肥和复混肥对碳酸盐岩试片溶蚀作用影响的室内模拟研究[J]. 地球与环境, 2011, 39(4):597-604.SONG Chao, LIU Changli, WANG Junkun, ZHANG Yun, HOU Hongbing. Impact of cattle dung and compound fertilizer addition on the dissolution of carbonate rock tablets: A column experiment[J]. Earth and Environment, 2011, 39(4): 597-604. [79] 武健强, 顾春生, 许书刚, 赵秀峰, 黄光明. 苏南地区碳酸盐岩的溶蚀性分析[J]. 中国岩溶, 2021, 40(4):565-571.WU Jianqing, GU Chunsheng, XU Shugang, ZHAO Xiufeng, HUANG Guangming. Corrosion analysis of carbonate rocks in southern Jiangsu Province[J]. Carsologica Sinica, 2021, 40(4): 565-571. [80] LI Qiang, HE Yuanyuan, LI Zhongyi. The promoting effect of soil carbonic anhydrase on the limestone dissolution rate in SW China[J]. Carbonates & Evaporites, 2017, 32(2): 1-8. [81] Ryb U, Matmon A, Erel Y, Haviv I, Katz A, Starinsky A, Angert A, Team A. Controls on denudation rates in tectonically stable Mediterranean carbonate terrain[J]. Bulletin, 2014, 126(3-4): 553-568. [82] 黄奇波. 北方半干旱岩溶区岩溶碳汇过程及效应研究—以山西柳林泉岩溶流域为例 [D]. 北京: 中国地质大学, 2019.HUANG Qibo. The carbon sequestration effect in semi-arid karst area: A case study of Liuling spring catchment, Shanxi province [D]. Beijing: China University of Geosciences, 2019. [83] 孙平安, 肖琼, 郭永丽, 苗迎, 王奇岗, 章程. 混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇:以漓江流域上游为例[J]. 中国岩溶, 2021, 40(5):825-834.SUN Ping'an, XIAO Qiong, GUO Yongli, MIAO Ying, WANG Qigang, ZHANG Cheng. Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain: Take the upper reaches of the Lijiang river basin as an example[J]. Carsologica Sinica, 2021, 40(5): 825-834. -

计量
- 文章访问数: 8
- HTML浏览量: 4
- PDF下载量: 1
- 被引次数: 0