• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近30年岩溶地区碳储量时空变化分析及预测

晏红波 曾金钊 卢献健 赵凤阳

晏红波,曾金钊,卢献健,等. 近30年岩溶地区碳储量时空变化分析及预测−以红水河流域为例[J]. 中国岩溶,2025,44(1):100-112, 123 doi: 10.11932/karst20250107
引用本文: 晏红波,曾金钊,卢献健,等. 近30年岩溶地区碳储量时空变化分析及预测−以红水河流域为例[J]. 中国岩溶,2025,44(1):100-112, 123 doi: 10.11932/karst20250107
YAN Hongbo, ZENG Jinzhao, LU Xianjian, ZHAO Fengyang. Analysis and prediction of spatial and temporal variation of carbon storage in limestone area in recent 30 years:A case study of the Hongshui River Basin[J]. CARSOLOGICA SINICA, 2025, 44(1): 100-112, 123. doi: 10.11932/karst20250107
Citation: YAN Hongbo, ZENG Jinzhao, LU Xianjian, ZHAO Fengyang. Analysis and prediction of spatial and temporal variation of carbon storage in limestone area in recent 30 years:A case study of the Hongshui River Basin[J]. CARSOLOGICA SINICA, 2025, 44(1): 100-112, 123. doi: 10.11932/karst20250107

近30年岩溶地区碳储量时空变化分析及预测——以红水河流域为例

doi: 10.11932/karst20250107
基金项目: 国家自然科学基金项目(42361052);广西自然科学基金项目(2022GXNSFBA035639);国家自然科学基金项目(42064003)
详细信息
    作者简介:

    晏红波(1983-),女,博士,教授,主要从事遥感数据智能处理及地表参数变化监测研究。E-mail:2009019@glut.edu.cn

    通讯作者:

    卢献健(1982-),男,硕士,副教授,主要从事遥感影像智能处理与应用。E-mail:2008056@glut.edu.cn

  • 中图分类号: X171.1

Analysis and prediction of spatial and temporal variation of carbon storage in limestone area in recent 30 years:A case study of the Hongshui River Basin

  • 摘要: 岩溶地区具有生态脆弱、环境容量小、土地承载力低、抗干扰能力差等特征,了解岩溶地区生态系统碳储量变化的原因对于预防和控制生态系统退化和支持可持续发展至关重要。本研究以红水河流域为例,基于InVEST模型和PLUS模型评估其1990年至2020年的岩溶地区碳储量,并预测了2030年不同情景下岩溶地区碳储量的变化。研究结果表明:(1) 1990-2020年30年间红水河流域岩溶地区碳储量总体呈递增趋势,空间分布特征由东南向西北逐渐升高,总体的碳源/汇效应为汇大于源,总增加量为71.59×106 t;(2) 相较于2020年,在自然发展情景和生态保护情景下,2030年红水河流域的岩溶地区碳储量分别将增加7.69×106 t和10.74×106 t;而城镇发展情景下碳储量将减少5.14×106 t,城镇发展会导致岩溶地区固碳能力较强的林地减少,导致岩溶流域固碳能力失衡;(3) 根据地理探测器结果显示土地利用对碳储量的空间异质性解释力最强,解释力q值为0.833,以及土地利用与年均NDVI因子之间的相互作用对红水河流域碳储量的变化影响最显著,交互作用解释力为0.848,土地利用变化是使得岩溶碳储量升高主要原因。此研究结果可为红水河流域实现岩溶地区生态系统服务碳储量的可持续性发展、为土地利用管理优化提供科学指导提供理论和数据支持。

     

  • 图  1  红水河流域地理位置及岩溶地貌类型分布图

    Figure  1.  Geographical location of the Hongshui River Basin and the distribution of its karst landform types

    图  2  1990-2020年碳储量含量及空间变化

    Figure  2.  Carbon storage content from 1990 to 2020

    图  3  2020-2030年不同情景下土地利用时空变化

    Figure  3.  Spatio-temporal changes in land use under different scenarios from 2020 to 2030

    图  4  2020-2030年三种情景土地利用类型转移图

    Figure  4.  Land use type transition under three scenarios from 2020 to 2030

    图  5  不同情景下2030年碳储量空间分布及变化图

    Figure  5.  Spatial distribution and variation of carbon storage in 2030 under different scenarios

    图  6  因子探测和交互作用结果图

    Figure  6.  Results of factor detection and interaction

    表  1  红水河流域各土地利用类型碳密度/·hm−2

    Table  1.   Carbon density of land use types in Hongshui River Basin

    土地利用
    类型
    地上碳
    密度
    地下碳
    密度
    土壤碳
    密度
    死亡有机
    碳密度
    耕地 13.50 2.70 35.00 1.00
    草地 3.01 13.53 10.00 1.00
    林地 105.90 67.50 59.40 3.50
    湿地 37.00 11.80 56.71 3.00
    建设用地 1.20 0.93 12.48 0
    水域 1.02 0 0 0
    下载: 导出CSV

    表  2  PLUS模型转移成本矩阵

    Table  2.   PLUS model transfer cost matrix

    自然发展情景 城镇优先情景 生态保护情景
    A B C D E F A B C D E F A B C D E F
    土地利
    用类型
    A 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
    B 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0
    C 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0
    D 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1
    E 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
    F 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
    注:A-耕地 B-草地 C-林地 D-湿地 E-建设用地 F-水域
    下载: 导出CSV

    表  3  两个因子对因变量的交互作用

    Table  3.   Interaction of two factors on dependent variables

    判断依据交互作用
    q(X1∩X2) < Min(q1,q2)非线性减弱
    Min(q1,q2) < q(X1∩X2) < Max(q1,q2)单因子非线性减弱
    q(X1∩X2) > Max(q1,q2)双因子增强
    q(X1∩X2) = q1+q2独立
    q(X1∩X2) > q1+q2非线性增强
    *表中Min(q1,q2)表示取q1,q2中的最小值,Max(q1,q2)表示取q1,q2中的最大值,q1+q2表示取q1,q2的和。
    下载: 导出CSV

    表  4  1990、2000、2010和2020年各土地类型面积及占比

    Table  4.   Area and proportion of each land type in 1990, 2000, 2010 and 2020

    土地类型 1990年 2000年 2010年 2020年
    面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/%
    耕地 17751.434 35.165 14210.221 28.150 13505.526 26.754 12689.366 25.138
    草地 12.246 0.024 54.542 0.108 56.851 0.113 61.225 0.121
    林地 31947.882 63.289 35094.401 69.522 35514.595 70.354 36044.503 71.404
    湿地 0.149 0.000 1.923 0.004 2.094 0.004 2.374 0.005
    建设用地 500.090 0.991 684.471 1.356 930.969 1.844 1206.539 2.390
    水域 267.944 0.531 434.187 0.860 469.709 0.930 475.737 0.942
    下载: 导出CSV

    表  5  1990年~2020年土地利用转移矩阵

    Table  5.   Land use transfer matrix from 1990 to 2020

    2020年土地利用面积/km2
    耕地 草地 林地 湿地 建设用地 水域 总面积
    1990年土地利
    用面积/km2
    耕地 10896.853 13.354 6032.528 1.598 624.868 182.234 10896.853
    草地 0.439 9.961 1.803 0.002 0.030 0.012 0.439
    林地 1772.772 37.847 30002.547 0.074 80.328 54.315 1772.772
    湿地 0 0 0 0.149 0 0 0
    建设用地 0 0 0 0 500.090 0 0
    水域 19.301 0.063 7.626 0.553 1.224 239.177 19.301
    总面积 10896.853 13.354 6032.528 1.598 624.868 182.234 10896.853
    下载: 导出CSV

    表  6  未来各情景土地利用面积

    Table  6.   Future land use area under different scenarios

    2020年 2030年自然
    发展情景
    2030年城镇
    优先情景
    2030年生态
    保护情景
    耕地 12689.366 11956.148 12591.183 11887.438
    草地 61.225 55.096 59.988 53.656
    林地 36044.503 36516.677 35829.470 36665.501
    湿地 2.374 2.093 2.238 2.348
    建设用地 1206.539 1468.697 1521.123 1390.058
    水域 475.737 481.033 475.743 480.744
    下载: 导出CSV
  • [1] ZHU Guofeng, QIU Dongdong, ZHANG Zhuanxia, SANG Liyuan, LIU Yuwei, WANG Lei, ZHAO Kailiang, MA Huiying, XU Yuanxiao, WAN Qiaozhuo. Land-use changes lead to a decrease in carbon storage in arid region, China[J]. Ecological Indicators, 2021, 127: 107770. doi: 10.1016/j.ecolind.2021.107770
    [2] LI L, SONG Y, WEI X H, DONG J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China[J]. Ecological Indicators, 2020, 111: 106064. doi: 10.1016/j.ecolind.2020.106064
    [3] 王深, 吕连宏, 张保留, 王斯一, 吴静, 付加锋, 罗宏. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 2021, 34(9):2044-2055.

    WANG Shen, LV Lianhong, ZHANG Baoliu, WANG Siyi, WU Jing, FU Jiafeng, LUO Hong. Multi Objective Programming Model of Low-Cost Path for China's Peaking Carbon Dioxide Emissions and Carbon Neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055.
    [4] 于奭, 蒲俊兵, 刘凡, 杨慧. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4):418-428.

    YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems:a critical review[J]. Earth Science Frontiers, 2023, 30(4): 418-428.
    [5] ZENG S B, LIU Z H, Goldscheider N, Frank S, Goeppert N, Kaufmann G, Zeng C, Zeng Q, Sun H. Comparisons on the effects of temperature, runoff, and land-cover on carbonate weathering in different karst catchments: insights into the future global carbon cycle[J]. Hydrogeology Journal, 2021, 29(1): 331-345. doi: 10.1007/s10040-020-02252-5
    [6] 闫伟, 曾成, 肖时珍, 蓝家程, 代林玉, 邰治钦, 何江湖, 何春, 狄永宁. 湿润亚热带典型白云岩流域不同土地利用下的试片溶蚀速率及岩溶碳汇[J]. 地球与环境, 2021, 49(5):529-538.

    YAN Wei, ZENG Cheng, XIAO Shizhen, LAN Jiacheng, DAl Linyu, TAl Zhiqin, HE Jianghu, HE Chun, Dl Yongning. Dissolution Rate and Karst Carbon Sink of Different Land Use in Typical Dolomite Watershed with Humid Subtropical Weather[J]. Earth and Environment, 2021, 49(5): 529-538.
    [7] 孙平安, 肖琼, 郭永丽, 苗迎, 王奇岗, 章程. 混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇:以漓江流域上游为例[J]. 中国岩溶, 2021, 40(5):825-834. doi: 10.11932/karst20210509

    SUN Pingan, XIAO Qiong, GUO Yongli, MIAO Ying, WANG Qigang, ZHANG Cheng. Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain: Take the upper reaches of the Lijiang river basin as an example[J]. Carsologica Sinica, 2021, 40(5): 825-834. doi: 10.11932/karst20210509
    [8] 李瑞, 肖琼, 张陶, 李建鸿, 李丽. 人类活动影响下岩溶地下河水-岩作用强度时空差异分析[J]. 地球化学, 2017, 46(2):191-204. doi: 10.3969/j.issn.0379-1726.2017.02.008

    LI Rui, XIAO Qiong, ZHANG Tao, LI Jianhong, LI li. Temporal and spatial variation patterns of water-rock interaction under the impact of human activity in karst underground water[J]. Geochimica, 2017, 46(2): 191-204. doi: 10.3969/j.issn.0379-1726.2017.02.008
    [9] 林云, 梁家乐, 武亚遵, 贾方建, 任华鑫. 许家沟泉域岩溶地下水δ13CDIC特征及碳汇效应[J]. 干旱区资源与环境, 2021, 35(1):146-153.

    LIN Yun, LIANG Jiale, WU Yazun, JIA Fangjian, REN Huaxin. Characteristics of δ13CDIC of karst groundwater and carbon sink effect in Xujiagou spring area[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 146-153.
    [10] 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探: 以珠江流域为例[J]. 科学通报, 2011, 56(26):2181-2187. doi: 10.1360/csb2011-56-26-2181

    Cao Jianhua, Yang Hui, Kang Zhiqiang. Preliminary regional estimation of carbon sink flux by carbonate rock corrosion: A case study of the Pearl River Basin[J]. Chinese Sci Bull, 2011, 56(26): 2181-2187. doi: 10.1360/csb2011-56-26-2181
    [11] LIU J, ZHONG J, CHEN S, XU S, LI S L. Hydrological and biogeochemical controls on temporal variations of dissolved carbon and solutes in a karst river, South China[J]. Environmental Sciences Europe, 2021, 33.
    [12] HAN X K, YAN Z L, LANG YC, DING H, GUO Q J, LI S L. Enhanced sulfide oxidation by monsoon rainfall in a small typical karstic catchment of Southwest China[J]. Journal of Hydrology, 2022, 615: 128682. doi: 10.1016/j.jhydrol.2022.128682
    [13] ZNG S B, JIANG Y J, LIU Z H. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS[J]. Global and Planetary Change, 2016, 144: 171-181. doi: 10.1016/j.gloplacha.2016.07.015
    [14] LI Yu, GENG Huacai. Spatiotemporal trends in ecosystem carbon stock evolution and quantitative attribution in a karst watershed in southwest China[J]. Ecological Indicators, 2023, 153: 110429. doi: 10.1016/j.ecolind.2023.110429
    [15] ZHANG J Y, BIAN Z H, DAI M H, WANG L C, ZENG C F, SU W C. Differences and influencing factors related to underground water carbon uptake by karsts in the Houzhai Basin, southwestern China[J]. Solid Earth, 2016, 7: 1259-1268. doi: 10.5194/se-7-1259-2016
    [16] FENG H Y, Squires Victor. The temporal and spatial scales of arable land loss and its impact in Guangxi, China[J]. Advances in Social Sciences Research Journal, 2022, 9(1): 76-84. doi: 10.14738/assrj.91.11512
    [17] CHEN R S, YE C, CAI Y L, XING X S. Integrated Restoration of Small Watershed in Karst Regions of Southwest China[J]. AMBIO: A Journal of the Human Environment, 2012, 41: 907-912. doi: 10.1007/s13280-012-0296-z
    [18] HUANG Q H, CAI Y L, XING X S. Rocky desertification, antidesertification, and sustainable development in the karst mountain region of Southwest China[J]. AMBIO: A Journal of the Human Environment, 2008, 37(5): 390-392. doi: 10.1579/08-S-493.1
    [19] GUO F, JIANG G H, YUAN D X, POLK J S. Evolution of major environmental geological problems in karst areas of Southwestern China[J]. Environmental Earth Sciences, 2013, 69: 2427-2435. doi: 10.1007/s12665-012-2070-8
    [20] SUN H F, CHENG M, SU C X, LI H Y, ZHAO G D, SU M X, LI S C, ZHANG B, ZHANG L W, LI K. Characterization of shallow karst using electrical resistivity imaging in a limestone mining area[J]. Environmental Earth Sciences, 2017, 76: 767. doi: 10.1007/s12665-017-7112-9
    [21] TANG Y M, CHEN L H, SHE S Y. Evaluation of instream ecological flow with consideration of ecological responses to hydrological variations in the downstream Hongshui River Basin, China[J]. Ecological Indicators, 2021, 130: 108104. doi: 10.1016/j.ecolind.2021.108104
    [22] HUANG Y, YI L, XIAO W H, HOU G B, ZHOU Y Y. Spatiotemporal variation characteristics of extreme precipitation in the upper reaches of the Hongshui River Basin during 1959-2016[J]. Journal of Water and Climate Change, 2021, 12(6): 2378-2399. doi: 10.2166/wcc.2021.339
    [23] 李俊, 杨德宏, 吴锋振, 陈如俊, 何万才. 基于PLUS与In VEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 2023, 43(1):378-387.

    LI Jun, YANG Dehong, WU Fengzhen, CHEN Rujun, HE Wancai. Dynamic Simulation of Land Use Changes and Assessment of Carbon Storage in Kunming City Based on PLUS and InVEST Models[J]. Bulletin of Soil and Water Conservation, 2023, 43(1): 378-387.
    [24] 李琛, 高彬嫔, 吴映梅, 郑可君, 武燕. 基于PLUS模型的山区城镇景观生态风险动态模拟[J]. 浙江农林大学学报, 2022, 39(1):84-94.

    LI Sen, GAO Binpin, WU Yingmei, ZHENG Kejun, WU Yan. Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model[J]. Journal of Zhejiang A& F University, 2022, 39(1): 84-94.
    [25] 陈曦. 广西土壤有机碳储量估算及与全国部分省区的比较研究[J]. 地理科学, 2014, 34(10):1247-1253.

    CHEN Xi. Estimation of Soil Organic Carbon Reserves in Guangxi and Comparion Study with Some Provinces in China[J]. Scientia Geographica Sinica, 2014, 34(10): 1247-1253.
    [26] 赵胤程, 覃盟琳, 庞雅月, 王政强, 史倩倩. 基于FLUS-InVEST模型的北部湾城市群生态空间碳汇演变模拟及驱动因素研究[J]. 水土保持通报, 2022, 42(03):345-355. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203043

    ZHAO Yincheng, QIN Menglin, PANG Yayue, Wang Zhengqiang, Shi Qianqian. Evolution Simulation and Driving Factors of Eco-spatial Carbon Sinks in Beibu Gulf Urban Agglomeration Based on FLUS-InVEST Model[J]. Bulletin of Soil and Water Conservation, 2022, 42(03): 345-355. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203043
    [27] 丁岳, 王柳柱, 桂峰, 赵晟, 朱望远. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6):3343-3352.

    DING Yue, WANG Liuzhu, GUI Fng, ZHAO Sheng, ZHU Wangyuan. Ecosystem Carbon Storage in Hangzhou Bay Area Based on InVEST and PLUS Models[J]. Environmental Science, 2023, 44(6): 3343-3352.
    [28] 任胤铭, 刘小平, 许晓聪, 孙嵩松, 赵林峰, 梁迅, 曾莉. 基于FLUS-InVEST模型的京津冀多情景土地利用变化模拟及其对生态系统服务功能的影响研究[J]. 生态学报, 2023, 43(11):4473-4487.

    REN Yinming, LIU Xiaoping, XU Xiaocong, SUN Songsong, ZHAO Linfeng, LIANG Xun, ZENG Li. Multi-scenario simulation of land use change and its impact on ecosystem services Beijing-Tianjin-Hebei region based on the FLUS-InVEST Model[J]. Acta Ecologica Sinica, 2023, 43(11): 4473-4487.
    [29] LIANG X, GUAN Q F, Clarke K C, LIU S S, WANG B Y, YAO Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation(PLUS) model: A case study in Wuhan, China[J]. Computers Environment and Urban Systems, 2021, 85: 101569. doi: 10.1016/j.compenvurbsys.2020.101569
    [30] HU Z Y, WANG S J, BAI X Y, LUO G J, LI Q, WU L H, YANG Y J, TIAN S Q, LI C J, DENG Y H. Changes in ecosystem service values in karst areas of China[J]. Agriculture[J]. Ecosystems & Environment, 2020, 30, 107026.
    [31] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134.

    WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
    [32] LI Y H, YAO S, JIANG Z Z, JIANG H Z, WANG H R, RAN Q C, GAO X Y, DING X Y, GE D D. Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP-PLUS-InVEST Model and an Applied Case Study in Hangzhou, East China[J]. Land, 2022, 11(12): 2213. doi: 10.3390/land11122213
    [33] 曾思博, 蒋勇军. 土地利用对岩溶作用碳汇的影响研究综述[J]. 中国岩溶, 2016, 35(2):153-163. doi: 10.11932/karst20160204

    ZENG Sibo, JIANG Yongjun. Impact of Land-Use and Land-Cover change on the carbon sink produced by karst processes: A review[J]. Carsologica Sinica, 2016, 35(2): 153-163. doi: 10.11932/karst20160204
    [34] 蓝芙宁, 王文娟, 吴华英, 蒋忠诚, 覃小群, 安树青. 不同土地利用方式下土壤CO2时空分布特征及其影响因素:以湘西大龙洞地下河流域为例[J]. 中国岩溶, 2017, 36(4):427-432.

    LAN Funing, WANG Wenjuan WU Huaying, JIANG Zhongcheng, QIN Xiaoqun, AN Shuqing. Temporal and spatial distributions of CO2 in soil and their influencing factors under different LUCC: A case study of the Dalongdong underground river drainage area[J]. Carsologica Sinica, 2017, 36(4): 427-432.
    [35] 刘晓娟, 黎夏, 梁迅, 石洪, 欧金沛. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409.

    LIU Xiaojuan, LI Xia, LIANG Xu, Shi Hong, Ou Jinpei. Simulating the Change of Terrestrial Carbon Storage in China Based on the FLUS-InVEST Model[J]. Tropical Geography, 2019, 39(3): 397-409.
    [36] 孙婷, 邓飞艳, 焦树林. 土地利用空间差异对典型喀斯特泉域化学风化碳汇的影响[J]. 热带地理, 2017, 37(1):19-24.

    SUN Ting, DENG Feiyan, JIAO Shulin. Impact of Land-use Spatial Variability on the Atmospheric Carbon Sequestration of the Rock Weathering Process in Typical Karst Spring Catchments[J]. Tropical Geography, 2017, 37(1): 19-24.
    [37] LI C, Wu Y M, GAO B P, ZHENG K J, WU Y, LI C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China[J]. Ecological Indicators, 2021, 132: 108328. doi: 10.1016/j.ecolind.2021.108328
    [38] 朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2):222-229,239.

    ZHU Zhiqiang, MA Xiaoshuang, HU Hong. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou City by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation, 2021, 41(2): 222-229,239.
    [39] 史名杰, 武红旗, 贾宏涛, 朱磊, 董通, 何盘星, 杨强军. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 2021, 38(6):1010-1019.

    SHI Mingjie, WU Hongqi, JIA Hongtao, ZHU Lei, DONG Tong, HE Panxing, YANG Qiangjun. Temporal and spatial evolution and prediction of carbon stocks in Yili Valley based on MCE-CA-Markov and InVEST models[J]. Journal of Agricultural Resources and Environment, 2021, 38(6): 1010-1019.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  10
  • HTML浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 录用日期:  2024-07-03
  • 修回日期:  2024-07-03
  • 刊出日期:  2025-02-25

目录

    /

    返回文章
    返回