Experimental study on static and dynamic water dissolution characteristics of red layer gypsum interlayer
-
摘要: 四川盆地红层砂泥岩中广泛分布石膏夹层,石膏溶蚀形成大量孔洞,加之红层特殊的物理力学性能,极易造成地基承载力降低、工程结构不均匀沉降变形甚至破坏。为了探究不同流速环境下石膏夹层的溶蚀特性,采用自主设计的溶蚀试验装置开展红层石膏夹层静、动水溶蚀试验,通过溶液离子浓度变化刻画试验中石膏的溶蚀进程。结果表明,静水环境下石膏夹层溶蚀速率随时间呈先减小后增大的趋势,但幅值较小;动水环境中,石膏夹层平均化学溶蚀速率和瞬时化学溶蚀速率均表现出随时间减小的特征。同时,根据溶蚀量变化曲线发现流速增大后化学溶蚀和机械潜蚀作用均会得到加强。Abstract:
Gypsum interlayers with uneven thickness are widely distributed in the red layer sand and mudstone in Sichuan Basin. In the process of groundwater infiltration or erosion, these gypsum interlayers will inevitably produce dissolution reaction and form a large number of holes. Coupled with the special physical and mechanical properties of red layer, it is easy to reduce the bearing capacity of foundation, uneven settlement deformation and even damage of engineering structures. Therefore, it is necessary to carry out more in-depth research on the dissolution characteristics of gypsum interlayer in red layer. Based on an avionics hub project in Chongqing, this paper takes the gypsum sandwich rock at dam foundation as the research object, and uses a self-designed dynamic water dissolution device to carry out the dissolution test. The dissolution process of gypsum in the test can be characterized by regularly monitoring the concentration changes of $ {\mathrm{C}\mathrm{a}}^{2+}\mathrm{、}{{\mathrm{S}\mathrm{O}}_{4}^{2-}} $ ions in the solution. The dissolution characteristics of gypsum interlayer in red layer at different flow rates were investigated. At the end of the test, different degree of dissolution grooves appeared in the gypsum interlayers under different flow conditions. Among them, the grooves on the surface of the sample with static water corrosion are the smallest, only 2~3mm, while the grooves produced by sample corrosion in the moving water environment reach the deepest 12mm. It can be found that the dissolution rate of gypsum in the moving water environment has been greatly improved. The concentrations of $ {\mathrm{C}\mathrm{a}}^{2+}\mathrm{、}{{\mathrm{S}\mathrm{O}}_{4}^{2-}} $ in the solution were measured after the test, and it was found that the contents of both ions showed an increasing trend with time. Comparing the results of hydrostatic and dynamic water dissolution tests, it can be seen that the slope of $ {\mathrm{C}\mathrm{a}}^{2+} $ content change curve of experimental groups increases gradually with the increase of flow velocity, indicating that higher flow velocity has a certain promotion effect on the chemical dissolution of gypsum. Through the processing and conversion of the test data, it can be found that the average dissolution rate under different flow velocity environment shows a rapid decline in a short time, and then gradually tends to be stable. At the initial time of the corrosion test, the average chemical corrosion rate of the samples under different flow rates showed that the faster the flow rate, the greater the corrosion rate. With the experiment, the dissolution rate decreases rapidly and the decreasing trend in different flow velocity environments is different to some extent. The greater the flow velocity is, the greater the dissolution rate is. Compared with the dynamic water corrosion test, the average chemical corrosion rate of the samples in the static water environment is smaller in both value and range. Combined with the change curve of the average chemical dissolution rate of each sample, it can be found that the average dissolution rate of gypsum increases with the acceleration of the flow rate, which proves that the larger flow rate plays a role in promoting the dissolution of gypsum interlayer. The trend of instantaneous chemical dissolution rate curve of each dynamic water dissolution test group was basically consistent with the trend of average chemical dissolution rate curve, showing a law of decreasing with time, and all curves showed a sudden drop on the third day of the test, and then gradually decreased and tended to be stable. According to the curve of the dissolution amount of each sample with the flow rate, it can be found that the chemical dissolution and mechanical submergence of gypsum interlayer will be strengthened when the flow rate increases. -
Key words:
- Karst /
- Gypsum rock /
- Mechanical subduction /
- Chemical corrosion /
- Dissolution rate.
-
表 1 试验设计
Table 1. Experimental design
试验类型 试验编号 岩样编号 流量/L·min−1 取样时间/d 石膏层厚度/mm 天然密度/g·mm−2 天然含水率 静水
溶蚀A1 1-3 0 1、3、5、7、9、11、13、15、17 6 2.44 2.43 B1 1-6 3 5 2.45 2.70 B2 1-2 5 5 2.44 2.44 B3 1-11 7 5 2.34 2.23 B4 1-14 9 5 2.43 3.01 动水
溶蚀D-1 1-4 1.27 1、3、5、
7、95 2.43 1.80 D-2 1-12 0.79 5 2.40 2.20 D-3 1-13 0.31 5 2.43 3.04 表 2 自来水离子浓度
元素 浓度/mg·L−1 $ {\mathrm{C}\mathrm{a}}^{2+} $ 5.826 $ {{\mathrm{S}\mathrm{O}}_{4}}^{2+} $ 188.28 -
[1] 黄胜东, 赵龙, 黄贵任, 陈积普, 王宇. 滇中红层膏盐溶蚀特征及其对水质的影响:以楚雄谢家河河谷为例[J]. 中国岩溶, 2022, 41(4):610-622. doi: 10.11932/karst20220409HUANG Shengdong, ZHAO Long, HUANG Guiren, CHEN Jipu, WANG Yu. Dissolution characteristics of gypsum salt in the red beds of central Yunnan Province and their effects on groundwater quality: A case study of Xiejiahe valley in Chuxiong City[J]. Carsologica Sinica, 2022, 41(4): 610-622. doi: 10.11932/karst20220409 [2] 于奭, 严毅萍, 张春来, 王翱宇, 刘齐, 李幼玲. 酸雨对碳酸盐岩溶蚀速率影响的试验研究[J]. 桂林理工大学学报, 2011, 31(04):539-544.YU Shi, YAN Yiping, ZHANG Chunlai, WANG Aoyu, LIU Qi, LI Youling. Experimental study on the effect of acid rain on carbonate karst erosion rate[J]. Journal of Guilin University of Technology, 2011, 31(04): 539-544. [3] 吴应科, 梁永平. 长江中上游红层岩溶刍议[J]. 中国岩溶, 1987, 06(02):111-119.WU Yingke, LIANG Yongping. A discussion on red bed karst in the middle and upper reaches Yangtze River[J]. Carsologica Sinica, 1987, 06(02): 111-119. [4] 邢观猷. 对我国红层地区大坝工程安全措施的探讨[J]. 大坝与安全, 1996(2):1-7.XING Guanyou. DIscussion on safety measures of dam engineering in red layer area of China[J]. Dam & Safety, 1996(2): 1-7. [5] Nasrat Adamo, Nadhir Al-Ansari, Sven Knutsson, Jan Laue, Varoujan Sissakian. 伊拉克摩苏尔大坝溃坝危机与解决方案[J]. 大坝与安全, 2017(04):67-72.Nasrat Adamo, Nadhir Al-Ansari, Sven Knutsson, Jan Laue, Varoujan Sissakian. Crisis and Solution of Mosul Dam Failure[J]. Dam & Safety, 2017(04): 67-72. [6] 杨先毅. 嘉陵江合川水利枢纽建坝岩体主要地质问题研究[J]. 水文地质工程地质, 1998(4):38-39,47.YANG Xianyi. Study on the main geological problems of rock mass for dam construction in Hechuan water Conservancy project of Jialing River[J]. Hydrogeology & Engineering Geology, 1998(4): 38-39,47. [7] 洪文之, 张林, 冯正华. 西宁石膏岩对水工建筑物危害的探讨[J]. 水文地质工程地质, 1998(6):50-51.HONG Wenzhi, ZHANG Lin, FENG Zhenghua. Discussion on the hazards of gypsum rock to hydraulic buildings in Xining[J]. Hydrogeology & Engineering Geology, 1998(6): 50-51. [8] 魏玉峰, 聂德新. 第三系红层中石膏溶蚀特性及其对工程的影响[J]. 水文地质工程地质, 2005, 32(2):62-64.WEI Yufeng, NIE Dexin. The speciality of gypsum dissolution of the Neogene red clay and its influence to engineering[J]. Hydrogeology & Engineering Geology, 2005, 32(2): 62-64. [9] 林仕祥, 王启国. 王甫洲水利枢纽坝基石膏溶蚀研究及处理对策[J]. 人民长江, 2007, 38(9):40-42. doi: 10.3969/j.issn.1001-4179.2007.09.017LIN Shixiang, WANG Qiguo. Research and treatment of gypsum dissolution on dam foundation of Wangfuzhou Water Conservancy Project[J]. Yangtze River, 2007, 38(9): 40-42. doi: 10.3969/j.issn.1001-4179.2007.09.017 [10] 王启国, 严应征, 林仕祥, 潘坤. 王甫洲水利枢纽坝基主要工程地质问题及对策[J]. 人民长江, 2009, 40(5):80-83.WANG Qiguo, YAN Yingzheng, LIN Shixiang, PAN Kun. Main engineering geological problems and countermeasures of dam foundation of Wangfuzhou Hydro Project on the Hanjiang River[J]. Yangtze River, 2009, 40(5): 80-83. [11] 郑莉. 穆家沟水库石膏夹层对坝基渗透和渗漏稳定性分析[J]. 三峡大学学报(自然科学版), 2019(s1):182-184.ZHENG Li. Analysis of the permeability and leakage stability of gypsum interlayer in Mujiagou Reservoir on dam foundation[J]. Journal of China Three Gorges University(Natural Sciences), 2019(s1): 182-184. [12] 郁敏. 八盘峡水电站坝址高矿化地下水质成因及防治对策研究[D]. 南京: 河海大学, 2007.YU Min. Study on the genesis and prevention countermeasures of high mineralization groundwater quality at the dam site of Bapanxia Hydropower Station[D]. Nanjing: Hohai University, 2007. [13] 刘琦, 白友恩, 顾展飞, 卢耀如, 盛祝平. 石漠化地区石灰岩和白云岩的溶蚀-蠕变特性试验研究——以贵州贞丰-关岭花江岩溶区为例[J]. 桂林理工大学学报, 2017, 37(03):399-404.LIU Qi, BAI YouEn, GU Zhanfei, LU Yaoru, SHENG Zhuping. Experimental study on dissolution creep characteristics of limestone and dolomite in rocky desertification area: A case study of Huajiang Karst area in Zhenfeng-Guanling, Guizhou Province[J]. Journal of Guilin University of Technology, 2017, 37(03): 399-404. [14] Gysel M. Anhydrite dissolution phenomena; three case histories of anhydrite karst caused by water tunnel operation[J]. Rock mechanics and rock engineering, 2002, 35(1): 1-21. doi: 10.1007/s006030200006 [15] 高明明, 燕新, 焦云成. 不同溶液下石膏岩溶蚀试验研究[J]. 山东交通科技, 2021(5):39-41.GAO Mingming, YAN Xin, JIAO Yuncheng. Experimental study on gypsum karst erosion in different solutions[J]. Shandong Jiaotong Keji, 2021(5): 39-41. [16] 高明明, 祝艳波, 苗帅升, 田王慧, 龚政豪, 巨之通. 石膏岩溶蚀与强度特性试验研究[J]. 科学技术与工程, 2020, 20(8):2975-2980.GAO Mingming, ZHU Yanbo, MIAO Shuaisheng, TIAN Wanghui, GONG Zhenghao, JU Zhitong. Experimental Study on Dissolution and Strength Characteristics of Gypsum Rock[J]. Science Technology and Engineering, 2020, 20(8): 2975-2980. [17] 盘惠林. 成都地区膏岩地层溶蚀及对地下建筑物混凝土基础的影响研究[D]. 吉林: 吉林大学, 2022.PAN Huilin. Study on the dissolution of gypsum rock strata and its influence on the concrete foundation of underground buildings in Chengdu area[D]. Jilin: Jilin University, 2022. [18] 祝艳波, 吴银亮, 余宏明. 隧道石膏质围岩溶蚀及溶出特性试验研究[J]. 现代隧道技术, 2016, 53(1):28-37,61.ZHU Yanbo, WU Yinliang, YU Hongming. Experimental Research on Corrosion and Leaching Characteristics of Gypsum Rock Surrounding Tunnels[J]. Modern Tunnelling Technology, 2016, 53(1): 28-37,61. [19] 张玲玲. 石膏原岩静水溶蚀时间-温度效应试验初步研究[J]. 中国岩溶, 2019, 38(02):265-268.ZHANG Lingling. Preliminary study on the time-temperature effect test of hydrostatic dissolution of gypsum original rock[J]. Carsologica Sinica, 2019, 38(02): 265-268. [20] Kemper W D, Olsen J, Demooy C J, Anonymous. Dissolution rate of gypsum in flowing water[J]. Proceedings - Soil Science Society of America, 1975, 39(3): 458-463. doi: 10.2136/sssaj1975.03615995003900030026x [21] 徐文斌. 成都天府新区灌口组芒硝/石膏溶蚀规律研究[D]. 成都: 成都理工大学, 2020.XU Wenbin. Study on the dissolution law of miscanthus nitrate/gypsum in the Guankou Formation of Tianfu New Area, Chengdu[D]. Chengdu: Chengdu University of Technology, 2020. [22] Jeschke A A, Vosbeck K, Dreybrodt W. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 27-34. doi: 10.1016/S0016-7037(00)00510-X [23] 韩浩东, 王春山, 王东辉, 李鹏岳, 李华, 杨涛. 成都市白垩系灌口组富膏盐红层溶蚀特征与机理[J]. 中国岩溶, 2021, 40(5):768-782. doi: 10.11932/karst20210504HAN Haodong, WANG Chunshan, WANG Donghui, LI Pengyue, LI Hua, YANG Tao. Dissolution characteristics and mechanism of gypsum-salt-rich-red beds in Cretaceous Guankou formation in Chengdu[J]. Carsologica Sinica, 2021, 40(5): 768-782. doi: 10.11932/karst20210504 [24] Rahimi M R, Mohammadi S D, Taleb Beydokhti A. Laboratory simulation of gypsum rock dissolution at different pressures, water-flow velocities and pH ranges[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 56(1): qjegh2021-120. [25] 陈如冰, 罗明明, 罗朝晖, 陈植华, 周宏. 三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J]. 中国岩溶, 2019, 38(2):258-264.CHEN Rubing, LUO Mingming, LUO Zhaohui, CHEN Zhihua, ZHOU Hong. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges Area[J]. Carsologica Sinica, 2019, 38(2): 258-264. [26] 魏玉峰. 新第三系红层石膏岩工程特性及工程应用研究——以黄河黄丰水电站为例[D]. 成都: 成都理工大学, 2005.WEI Yufeng. Research on engineering characteristics and application of Neogene red layer gypsum rock -- A case study of Huangfeng Hydropower Station, Huanghe River[D]. Chengdu: Chengdu University of Technology, 2005.