Geological significance, prediction, and application of structural fractures in tight limestone reservoirs of the Taiyuan Formation in Ordos Basin
-
摘要: 鄂尔多斯盆地太原组灰岩分布范围广泛,厚度大,但因岩性致密,单井产量低,长期以来天然气勘探未获得重大突破。随着研究的深入,发现高产气流井储层段往往受构造裂缝发育程度的控制。对于构造缝是否与储集层的优劣、天然气的成藏富集有关,以往缺少系统分析。本次研究首次系统总结了太原组灰岩构造缝特征,通过单轴载荷下岩石核磁共振(NMR)、CT扫描等技术分析了构造裂缝对储层的影响,剖析了缝网系统在成藏过程中的输导作用,根据研究区地质背景构建了改进的高斯曲率法(IGC)预测有利构造缝的发育区,并在横山地区井位部署中应用。结果表明:1)相对低角度缝、斜交缝,高角度张裂缝充填程度低,有效性好,常贯穿、切割、错动其它类型的裂缝使灰岩储集性能变好,同时形成的缝网系统利于烃类的高效运移;2)构造缝对致密灰岩储层物性有极大贡献作用,岩石物理实验表明,在裂缝发育的情况下,平均孔隙度由2.1%增加到4.2%,增加1倍。裂缝对总孔隙度的贡献率在14.3%~72.7%,平均值43.4%,三种储集岩性中,粉晶灰岩孔隙度增加最大、藻粘结灰岩次之,泥晶灰岩最小;3)改进的高斯曲率法(IGC)可预测有利构造缝的发育区,IGC值越大,高角度张性裂缝越发育,天然气富集条件越有利,该方法在横山地区取得了成功应用。上述认识将进一步指导盆地范围内太原组灰岩下一步的大面积勘探开发。Abstract:
In Ordos Basin,the Taiyuan Formation mainly consists of a marine-terrestrial transitional sedimentary system.The northern part featured shallow water delta deposits dominated by terrigenous clastic rocks, while the southern part consists of coastal marine limestone deposits. The Shenmu Gas Field has been discovered in the northern terrigenous clastic rock strata. The southern limestone strata has a wide distribution, covering approximately 14 square kilometers, and exhibits considerable thickness, ranging from 5 to 30 meters.However, the limestone reservoir is dense with an average porosity of 2.1%, an average permeability of 0.21mD, and an average throat radius of 0.12μm. For a long time, exploration had not focused on it due to its dense reservoir lithology.Recent years, further research has indicated that the high-yield gas wells are often related to the development degree of structural fractures.However, there is a lack of systematic analysis of whether the quality of the limestone reservoir and the natural gas enrichment relate to these structural development. To solve the above difficulties, the following steps have been studied and adopted in this study.Considering the tectonic setting,the structural fracture characteristics the of the Taiyuan limestone were firstly analyzed by field profiles, core observations, and well log data.Secondly the impact of structural fractures on the porosity of dense limestone reservoirs was observed by uniaxial loading rock core nuclear magnetic resonance (NMR) technology and CT scanning for the first time. Furthermore, the fluid inclusion was investigated to analyze the conducing role of the fracture networks during gas accumulation process.Lastly, based on the work mentioned above,to predict the development of structural fractures and favorable blocks exploration, an improved Gaussian curvature method (IGC) was proposed,according to the specific geological conditions, and it was applied in well deployment in the Hengshan area. The results show that: 1) In the study area, regional tectonic stress field is mainly influenced by the Yanshanian Movement,and the main tectonic framework was mainly established by it with NW-SE compressive stress.Compared with low-angle fractures and oblique fractures, high-angle tension fractures have low filling levels and good effectiveness.it often penetrates, cuts, and dislocates other types of fracture improving the limestone reservoir properties. In addition, the formed fracture network system may facilitate the efficient migration of hydrocarbons; 2) Rock physics experiments had manifested that structural fractures greatly contribute to the physical properties of the tight limestone reservoirs.With the development of fractures, the average porosity doubled from 2.1% to 4.2%. The contribution rate of fractures to total porosity ranged from 14.3%~72.7%, with an average of 43.4%. Among the three reservoir rock types, the porosity of powder crystal limestone increased the most, followed by algae bound limestone, and mud crystal limestone had the smallest increase; Combined with typical well reservoir-forming temperature, burial history, and thermal evolution history in the study area,inclusion analysis made clear that the widely developed fracture networks formed an effective transport system, and hydrocarbons effectively migrated by it during the main reservoir-forming period from the Late Jurassic to the Early Cretaceous.That is to say, generated from the main coal-bearing source rocks 8# coal and 5# coal located at the top and bottom of the limestone reservoir,the natural gas entered the limestone reservoir by the effective transport system.And supplemented by a cap rock of the marine mudstone on the top of the Taiyuan Formation, a superior "sandwich" type reservoir formed;4) The improved Gaussian curvature method (IGC) can predict the development degree of favorable structural fractures. The higher the IGC value, the more developed the high-angle tension fractures, and the more favorable the conditions for natural gas enrichment. This method was a debut in the Hongshan area to support well deployment. YT1H*,the first risk exploration well, achieved a gas production of 540,000 cubic meters per day, and marked a breakthrough in the exploration of the Taiyuan limestone in the Ordos Basin. In the past 2 years, 9 industrial gas wells have been discovered in this area, 5 of which have output above 100,000 cubic meters per day. Among them, YT4H* achieved an output of 1,088,000 cubic meters per day.The above exploration achievement demonstrated the effectiveness of the research and provided a reference for re reacquainting tight carbonate reservoirs. It is expected that this study can further guide the large-scale exploration and development of the Taiyuan Formation limestone in the Ordos Basin. -
Key words:
- Ordos Basin /
- Taiyuan Formation /
- Dense limestone /
- fractures prediction /
- Exploration Target Selection
-
图 2 鄂尔多斯盆地太原组灰岩储层特征
(a)生屑粉晶灰岩,J21井,3408.10 m,太原组;(b)藻粘结灰岩,Q2井,2566.88 m,太原组;(c)生屑泥晶灰岩,M61井,2305.58 m,太原组;(d)生物体腔孔,Z4井,2364.4 m,太原组;(e)晶间孔及溶孔,T58井,3414.16 m,太原组;(f)裂缝有少量方解石充填S2井,2337 m,太原组。
Figure 2. Limestone reservoir characteristics of the Taiyuan Formation in Ordos Basin
(a) Biogenic crystal limestone, J21well, 3408.10 m, the Taiyuan Formation; (b) Algal cemented limestone, Q2 well, 2566.88 m, the Taiyuan Formation; (c) Bioclastic mudstone limestone, M61well,2305.58 m, the Taiyuan Formation; (d) Biological cavity, Z4well,2364.4 m, the Taiyuan Formation; (e) Intergranular and dissolved pores, T58 well, 3414.16 m, the Taiyuan Formation; (f) Fractures with small amount of calcite filling, S2 well,2337 m, the Taiyuan Formation.
图 4 太原组灰岩构造缝发育特征
(a)共轭剪切缝,Q71井,太原组,2860.50 m;(b)共轭剪切缝,成家庄剖面;(c)剪切缝,裂面具阶步擦痕,SH137井,2478.24 m;(d)高角度缝,Q71,太原组,2860.50 m;(e)高角度缝,Q71井,太原组,2853.78 m;(f)网状缝,招贤剖面,2492.12 m;(g)水平缝,骆驼局剖面;(h)高角度缝水平缝相互切割,招贤剖面。
Figure 4. Development characteristics of structural fractures in the Taiyuan limestone
(a) Conjugate shear fractures, Q71 well, the Taiyuan Formation, 2860.50 m; (b) Conjugate shear fractures, Chengjiazhuang section; (c) Shear fractures, step scratches on crack surface, SH137 well, 2478.24 m; (d) High angle fractures, Q71 well, Taiyuan Formation, 2860.50 m; (e) High angle fractures, Q71 well, Taiyuan Formation, 2853.78 m; (f) fracture nets, Zhaoxian profile, 2492.12 m; (g) Horizontal fractures, Luotuoju section; (h) Mutual cutting of high angle fractures and horizontal fractures, Zhaoxian profile.
图 6 鄂尔多斯盆地太原组灰岩储层储集空间类型
(a) 晶间孔发育,J21井,太原组,3413.09 m;(b) 相互孤立的生物体腔孔,G21井,太原组,2364.70 m,(c) 微裂联通接生物体腔壁溶孔,J21井,3413.10 m;(d) 溶孔、晶间孔、微裂缝,CT扫描俯视图,G21井,太原组,3404.13 m;(e) 溶孔、晶间孔、微裂缝,CT扫描侧视图,G21井,太原组,3404.13 m; (f) 孔隙空间立体网络,CT扫描透视图,G21井,太原组,3404.13 m。
Figure 6. Reservoir space types of the Taiyuan Formation in Ordos Basin
(a) Interstitial pore development, J21 well, the Taiyuan Formation, 3413.09 m; (b) Isolated biological cavities, G21 well, the Taiyuan Formation, 2364.70 m; (c) Microfracture connected to biological dissolution pore, J21 well, the Taiyuan Formation, 3413.10 m; (d) Dissolved pores, intergranular pores, microcracks, CT scan(top view) , G21 well, the Taiyuan Formation, 3404.13 m; (e) Dissolved pores, intergranular pores, microcracks, CT scan(side view), G21 well, the Taiyuan Formation, 3404.13 m; (f) Stereoscopic network of pore space, CT scan(perspective view), G21 well, the Taiyuan Formation, 3404.13 m.
图 11 盆地太原组灰岩裂缝中甲烷包裹体、沥青包裹体产状形态特征及激光拉曼光谱
(a) 构造缝,方解石充填,单偏光5倍,T65井,3 247.29 m;(b) 方解石脉体荧光显示,发黄色光,T65井,3 247.29 m;(c) 单个沥青质包裹体,T65井,3 247.29 m;(d)单个沥青质包裹体激光拉曼光谱,T65井,3 247.29 m;(e)单个甲烷包裹体,Q2井,2 564.01 m;(f) 单个甲烷包裹体激光拉曼光谱,Q2井,2 564.01 m。
Figure 11. Occurrence morphology and laser Raman spectroscopy characteristics of methane and asphalt inclusions in the fractures of the Taiyuan limestone in the basin
(a) structural fracture, filled with calcite, 5x single polarization, T65 well, 3 247.29 m; (b) Calcite vein fluorescence , yellow light, T65 well, 3 247.29 m; (c) Single asphaltene inclusion, T65 well, 3 247.29 m; (d) Laser Raman spectroscopy of single asphaltene inclusion, T65 well, 3 247.29 m; (e) Single methane inclusion, Q2 well, 2 564.01 m; (f) Laser Raman spectroscopy of single methane inclusion , Q2 well, 2 564.01 m
表 1 太原灰岩典型井裂缝产状统计表
Table 1. Statistics of typical well fracture occurrence in the Taiyuan limestone
井号 SH108 M120 M130 M60 M120 M170 S122 M130 深度/m 2 403.0 2 555.5 1 646.3 2 555.7 1 645.4 2 243.3 2 206.6 2 310.7 倾角/° 85 61.0 68.3 60.9 72.4 73.5 74.3 59 方位角/° 341.5 340.2 324.6 345.0 320.6 329.0 335.1 316 表 2 太原灰岩静态、动态孔隙度对比表
Table 2. Comparison of static and dynamic porosity of the Taiyuan Limestone
样品号 井号 岩性 载荷/MPa 深度/m 核磁孔隙/% 孔隙度
增加量/%裂缝孔隙度
贡献率/%裂缝贡献率
平均值/%静态 动态 1 M29 生屑
粉晶
灰岩22.3 2 238.8 2.7 5.9 3.2 54.2 65.8 2 Y18 23.4 2 317.9 0.9 3.3 2.4 72.7 3 T59 28.4 3 412.4 1.9 6.9 5 72.5 4 M29 23.4 2 245.7 0.8 2.2 1.4 63.6 5 M120 藻粘结
灰岩23.4 2 549.2 1.7 2.3 0.6 26.1 30.9 6 Q3 23.6 2 718.8 1.8 2.4 0.6 25.0 7 M125 24.1 2 728.2 6.3 10.8 4.5 41.7 8 S5 生屑
泥晶
灰岩27.82 3 413.3 2 / / / 18.0 9 S2 22.8 2 339.9 1.2 1.4 0.2 14.3 10 Q2 24.7 2 568.8 1.8 2.3 0.5 21.7 -
[1] 沈玉林, 郭英海, 李壮福, 魏新善, 贾志刚. 鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J]. 地球学报, 2009, 30(2):187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005SHEN Yulin, GUO Yinghai, LI Zhuangfu, WEI Xinshan, JIA Zhigang. Sequence Stratigraphy of Benxi-Taiyuan Formation in Eastern Ordos Basin[J]. Actageoscientica Sinica, 2009, 30(2): 187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005 [2] 李文厚, 张倩, 李克永, 陈强, 郭艳琴, 马瑶, 冯娟萍. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1):39-52. doi: 10.7605/gdlxb.2021.01.003LI Wenhou, ZHANG Qian, LI Keyong, CHEN Qiang, GUO Yanqing, MA Yao, FENG Juanping. Sedimentary evolution of the late Paleozoic in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 39-52. doi: 10.7605/gdlxb.2021.01.003 [3] 郭艳琴, 赵灵生, 郭彬程, 费世祥, 李文厚, 张倩, 袁珍, 马瑶, 何子琼, 李百强. 鄂尔多斯盆地及周缘地区下二叠统沉积特征[J]. 古地理学报, 2021, 23(1):65-80. doi: 10.7605/gdlxb.2021.01.005GUO Yanqin, ZHAO Lingsheng, GUO Bincheng, FEI Shixiang, LI Wenhou, ZHANG Qian, YUAN Zhen, MA Yao, HE Zhiqiong, LI Baiqiang. Sedimentary characteristics of the lower Permian in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 65-80. doi: 10.7605/gdlxb.2021.01.005 [4] 兰朝利, 张君峰, 陶维祥, 张永忠, 杨明慧 , 王金秀. 鄂尔多斯盆地神木气田太原组沉积特征与演化[J]. 地质学报, 2011, 85(4): 533-541.LAN Chaoli, ZHANG junfeng, TAO Weixiang, ZAHNG Yongzhong, YANG Minghui, WANG, Jinxiu. Sedimentary Characteristics and Evolution of the Upper Carboniferous Taiyuan Formation, Shenmu Gasfield, Northeastern Ordos Basin[J]. Aata Geologica Sinica, 2011, 85(4): 533-541. [5] 蒙晓灵, 张宏波, 冯强汉, 张保国, 王彩丽, 王准备. 鄂尔多斯盆地神木气田二叠系太原组天然气成藏条件[J]. 石油与天然气地质, 2013, 34(1):37-41. doi: 10.11743/ogg20130105MENG Xiaoling, ZHANG Hongbo, FENG Qianghan, ZHANG Baoguo, WANG Caili, WANG Zhunbei. Gas accumulation conditions of the Permian Taiyuan Formation in Shenmu gas field, Ordos Basin[J]. Oil&Gas Geology, 2013, 34(1): 37-41. doi: 10.11743/ogg20130105 [6] 杨华, 刘新社, 闫小雄, 张辉. 鄂尔多斯盆地神木气田的发现与天然气成藏地质特征[J]. 天然气工业, 2015, 35(06):1-13. doi: 10.3787/j.issn.1000-0976.2015.06.001YANG Hua, LIU Xinshe, YAN Xiaoxiong, ZHANG Hui. The Shenmu Gas Field in the Ordos Basin: Its discovery and reservoir-forming geological characteristics[J]. Natural Gas Industry, 2015, 35(06): 1-13. doi: 10.3787/j.issn.1000-0976.2015.06.001 [7] 张国栋, 朱静昌, 王益友. 华北中-西部地区晚石炭世太原组碳酸盐岩沉积环境[J]. 地质论评, 1991, 37(5):385-396. doi: 10.3321/j.issn:0371-5736.1991.05.001ZHANG Guodong, ZHU Jingchang, WANG Yiyou. Depositional environment of carbonate rocks of the late Carboniferous Taiyuan Formation in the western-central part of North China[J]. Georeview, 1991, 37(5): 385-396. doi: 10.3321/j.issn:0371-5736.1991.05.001 [8] 魏新善, 王飞雁, 王怀厂, 李雪梅. 鄂尔多斯盆地东部二叠系太原组灰岩储层特征[J]. 天然气工业, 2005, 25(4):16-18. doi: 10.3321/j.issn:1000-0976.2005.04.006WEI Xinshan, WANG Feiyan, WANG Huaichang, LI Xuemei. Characteristics of limestone reservoir of Permian Taiyuan Formation in eastern Ordos Basin[J]. Natural gas industry, 2005, 25(4): 16-18. doi: 10.3321/j.issn:1000-0976.2005.04.006 [9] 付金华. 鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J]. 地学前缘, 2023, 30(1): 20-29.FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin. Earth Science hrontiers, 2023, 30(1): 020-029. [10] 沈玉林, 郭英海, 李壮福, 魏新善, 贾志刚. 鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J]. 地球学报, 2009, 30(2):187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005SHEN Yulin, GUO Yinghai, LI Zhuangfu, WEI Xinshan, JIA Zhigang. Sequence Stratigraphy of Benxi-Taiyuan Formation in Eastern Ordos Basin[J]. Actageoscientica Sinica, 2009, 30(2): 187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005 [11] 李文厚, 张倩, 李克永, 陈强 郭艳琴 马瑶 冯娟萍 张道锋. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1):39-52. doi: 10.7605/gdlxb.2021.01.003LI Wenhou, ZHANG Qian, LI Keyong, CHEN Qiang, GUO Yanqin, MA Yao, FENG Juanping, ZHANG Daofeng. Sedimentary evolution of the late Paleozoic in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 39-52. doi: 10.7605/gdlxb.2021.01.003 [12] 郭艳琴, 赵灵生, 郭彬程, 费世祥, 李文厚, 张倩, 袁珍, 马瑶, 何子琼, 李百强. 鄂尔多斯盆地及周缘地区下二叠统沉积特征[J]. 古地理学报, 2021, 23(1):65-80. doi: 10.7605/gdlxb.2021.01.005GUO Yanqin, ZHAO Lingsheng, GUO Bincheng, FEI Shixiang, LI Wenhou, ZHANG Qian, YUAN Zhen, MA Yao, HE Zhiqiong, LI Bai qiang. Sedimentary characteristics of the lower Permian in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 65-80. doi: 10.7605/gdlxb.2021.01.005 [13] 何自新, 费安琦, 王同和. 鄂尔多斯盆地演化与油气[M]. 北京: 石油工业出版社, 2003: 155-173.HE Zhixin, FEI Anqi, WANG Tonghe. Oil and Gas Evolution in the Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003: 155-173. [14] 徐黎明, 周立发. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造及成矿学, 2006, 30(4):455-462.XU Liming, ZHOU Lifa. Characteristics of tectonic setting of tectono-stress field of Ordos Basin[J]. Geotectonica Metallogenia, 2006, 30(4): 455-462. [15] 张 泓, 孟召平, 何宗莲. 鄂尔多斯煤盆地构造应力场研究[J]. 煤炭学报, 2000, 25(3):1-5.ZHANG Hong, MENG Shaoping, HE Zonglian. Study on the tectonic stress fields in the Ordos Coal Basin[J]. Journal of China Coal Society, 2000, 25(3): 1-5. [16] Nelson R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. Boston: Gulf Publishing, 2001: 89-94. [17] Graham Wall B R, Girbacea R, Mesonjesi A. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J]. AAPG Bulletin, 2006, 90(8): 1227-1249. doi: 10.1306/03280604014 [18] Poppelreiter M, Balzarini M A, De Sousa P. Structural control on sweet-spot distribution in a carbonate reservoir: Conceptsand 3-D models(Cogollo Group, Lower Cretaceous, Venezuela)[J]. AAPG Bulletin, 2005, 89(12): 1651-1676. doi: 10.1306/08080504126 [19] 田鹤, 曾联波, 徐翔, 舒志国, 彭勇民 , 毛哲, 罗兵. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483.TIAN He, ZENG Lianbo, XU Xiang, SHU Zhiguo, PENG Yongming, MAO Zhe, LUO Bing. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil&Gas Geology, 2020, 41(3): 474-483. [20] 童享茂, 钱祥麟. 储层裂缝的研究和分析方法[J]. 石油大学学报(自然科学版), 1994, 18(6): 14-20.TONG Xiangmao, QIAN Xiangling. Research and analysis on natural fracture. Journal of the university of Petroleum, China, 1994, 18 (6): 14-20. [21] 马军, 房大志, 张培先, 谷红陶, 胡春锋, 卢比, 程轶妍, 高全芳, 万静雅. 渝东南地区阳春沟构造带五峰组-龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7):1117-1131.MA Jun, FANG Dazhi, ZHANG Peixian, GU Hongtao, HU Chunfeng, LU Bi, CHEN Yiyan, GAO Quanfang, WAN Jingya. Characteristics and genesis of shale fractures in Wufeng-Longmaxi formations of Yangchungou structural belt in Southeast Chongqing[J]. Natural Gas Geoscience, 2022, 33(7): 1117-1131. [22] 范存辉, 李虎, 钟城, 秦启荣, 胡东风, 张羽, 何顺, 张玮. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J]. 石油学报, 2018, 39(4):379-390. doi: 10.7623/syxb201804002FAN Cunhui, LI Hu, ZHONG Chen, QIN Qirong, HU Dongfeng, ZHANG Yu, HEShun, ZHANG Wei. Tectonic fracture stagesand evolution model of Longmaxi Formation shale, Dingshan structure, Southeast[J]. Acta Petrolei Sinica, 2018, 39(4): 379-390. doi: 10.7623/syxb201804002 [23] 张泓, 白清昭, 张笑薇, 高选政, 何宗莲, 李恒堂, 吕志发. 鄂尔多斯聚煤盆地的形成及构造环境[J]. 煤田地质与勘探, 1995, 23(3):1-9.ZHANG Hong, BAI Qingzhao, ZHANG Xiaowei, GAO Xuanzheng, HE Zhonglian, LI Hengtang, LV Zhifa. Formation of Ordos Basin and its coal-formation tectonic environment[J]. Coal Field Geology and Exploration, 1995, 23(3): 1-9. [24] 姜文, 柏道远, 尹欧, 杨帆, 彭祖武, 钟响, 李彬, 李银敏. 湘中灰山港—煤炭坝地区岩溶发育特征及其构造控制[J]. 中国岩溶, 2022, 41(01):1-12. doi: 10.11932/karst2021y39JIANG Wen, BAI Daoyuan, YIN Ou, YANG Fan, PENG Zuwu, ZHONG Xiang, LI Bin, LI Yingming. Characteristics of karst development and its structural control in the Huishangang-Meitanba area of central Hunan[J]. Carsologica Sinica, 2022, 41(01): 1-12. doi: 10.11932/karst2021y39 [25] 邓兴梁. 裂缝对和田河气田石炭系生屑灰岩段储层的控制作用[J]. 中国岩溶, 2007, 26(3):237-241. doi: 10.3969/j.issn.1001-4810.2007.03.009DENG Xing-liang. Role of fracture in controlling the reservoir stratum in the carboniferous bioclastic Limestone member in Hetian river gas field, Tarim basin[J]. Carsologica Sinica, 2007, 26(3): 237-241. doi: 10.3969/j.issn.1001-4810.2007.03.009 [26] 吴继文, 吴亮君, 吕勇, 王璞珺, 周嘉铭, 林宇, 潘明, 廖家飞, 孟庆鑫. 云南泸水市压扭性构造对银厂坪白云岩岩溶系统发育控制作用[J]. 中国岩溶, 2021, 40(05):793-804. doi: 10.11932/karst20210506WU Jiwen, WU Liangjun, LV Yong, WANG Pujun, ZHOU Jiaming, LIN Yu, PAN Ming, LIAO Jiafei, MENG Qingxin. Transpressional structure and its control on development of Yinchangping dolomite karst system in Lushui City, Yunnan[J]. Carsologica Sinica, 2021, 40(05): 793-804. doi: 10.11932/karst20210506 [27] 张元中, 肖立志. 单轴载荷下岩石核磁共振特征的实验研究, 核电子学与探测技术, 2006, 26(6): 731-734.ZHANG Zhongyan, XIAO Lizhi. Experimental study on NMR characteristics in rock under uniaxial loading, Nuclear Electronics &Detection Technology, 2006, 26 (6): 731-734. [28] 冯周, 刘瑞林, 应海玲, 何风, 肖红琳. 岩心CT扫描图像分割计算缝洞孔隙度与测井资料处理结果对比研究[J]. 石油天然气学报, 2011, 33(4):100-104. doi: 10.3969/j.issn.1000-9752.2011.04.023FENG Zhou, LIU Ruilin, YING Hailin, HE Feng, XIAO Hongling. Comparison of fracture-vugy porosity and logging data interpretaion in CT scanning image Segmentaion[J]. Journal of Oil and Gas Technology, 2011, 33(4): 100-104. doi: 10.3969/j.issn.1000-9752.2011.04.023 [29] 邓宇林, 郭绪磊, 罗明明, 陈祥勇, 况野, 周宏. 基于扫描电镜和CT成像技术的碳酸盐岩溶蚀作用微观结构和变化规律研究[J]. 中国岩溶, 2022, 41(5):698-707. doi: 10.11932/karst20220503DENG Yulin, GUO Xulei, LUO Mingming, CHEN Xiangyong, KUANG Ye, ZHOU Hong. Study on the microstructure and variation law of carbonate rock dissolution based on scanning electron microscopy and CT imaging technology[J]. Carsologica Sinica, 2022, 41(5): 698-707. doi: 10.11932/karst20220503 [30] 舒晓辉, 张军涛, 李国蓉, 龙胜祥, 吴世祥, 李宏涛. 四川盆地北部栖霞组一茅口组热液白云岩特征与成因[J]. 石油与天然气地质, 2012, 33(3):442-448. doi: 10.11743/ogg20120314SHU Xiaohui, ZHANG Juntao, LI Guorong, LONG Shengxiang, LI Hongtao. Characteristics and genesis of hydrothermal dolomites of Qixia and Maokou Formations innorthern Sichuan Basin[J]. Oil& Gas Geology, 2012, 33(3): 442-448. doi: 10.11743/ogg20120314 [31] Baceta J I, Wright V P, Pujalte, V. Palaeo-mixing zone karst features from Palaeocene of north Spain: criteria for recognizing a potentially widespread but rarely documented diagenetic system[J]. Sedimentary Geology, 2001, 139(3/4): 205-216. [32] 王东, 王国芝, 刘树根, 丁代淑. 塔东地区英东2井寒武系一奥陶系储层流体地球化学示踪[J]. 石油与天然气地质, 2012, 33(6):867-876. doi: 10.11743/ogg20120607WANG Dong, WANG Guozhi, LIU Shugeng, DING Daishu. Geochemical tracing of the Cambrian-0rdovician reservoir fluid in well Yingdong-2 eastern tarim Basin[J]. Oil& Gas Geology, 2012, 33(6): 867-876. doi: 10.11743/ogg20120607 [33] 王奕松, 胡瀚文, 石富伦, 林瑞钦, 刘达冬, 冯霞, 张大权, 周喆, 赵福平, 孙钊, 陈祎, 杜威. 黔北地区五峰组—龙马溪组页岩气成藏过程及勘探启示: 来自流体包裹体的证据[J]. 天然气地球科学, 2023, 34(1):140-152.WANG Yisong, HU Hanwen, SHI Fulong, LIN Ruiqin, LIU Dadong, FENG Xia, ZHANG Dashu, ZHOU Jie, ZHAO Fuping, SUN Zhao, CHEN Wei, DU Wei. Reservoir-forming process of shale gas in Wufeng-Longmaxi formations in northern Guizhou Province and its exploration implications: Evidence from fluid inclusion[J]. Natural Gas Geoscience, 2023, 34(1): 140-152. [34] 任战利, 张盛, 高胜利, 崔军平, 肖媛媛, 肖晖. 鄂尔多斯盆地构造热演化史及其成藏成矿意义[J]. 中国科学(D辑: 地球科学), 2007, 37(增刊Ⅰ):23-32.REN Zhanli, ZHANG sheng, GAO Shengli, CUI Junping, XIAO Yuanyuan, XIAO Hui. Tectonic thermal history and its significance on the formation of oil and gas accumulation and minerd deposit in Ordos Basin[J]. Science in China(Series D: Earth Sciences), 2007, 37(SupplementⅠ): 23-32. [35] 蔡刚, 孙东, 裴明利, 刘伟方, 龚洪林. 相干体技术及其在油气勘探中的应用[J]. 天然气地球科学, 2006, 17(4): 510-513.CAI Gang, SUN Dong, PEi Mingli, LIU Weifang, GONG Honglin. Coherence cube technology and its application in oil and gas exploration [J] Natural Gas Geoscience, 2006, 17 (4): 510-513. [36] 赵军, 刘彦斌, 王菲菲, 戢宇强. 碳酸盐岩缝洞型储层类型识别与分类预测[J]. 中国岩溶, 2018, 37(4):584-591. doi: 10.11932/karst20180412ZHAO Jun, LIU Yanbin, WANG Feifei, JI Yuqiang. Identification and classification prediction of fractured-vuggy reservoir type in carbonate rocks[J]. Carsologica Sinica, 2018, 37(4): 584-591. doi: 10.11932/karst20180412 [37] 赵向原, 胡向阳, 肖开华, 贾跃玮. 川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素[J]. 石油与天然气地质, 2018, 39(1):30-39. doi: 10.11743/ogg20180104ZHAO Xiangyuan, HU Xiangyang, XIAO Kaihua, JIA Yuewei. Characteristics and major control factors of natural fractures in carbonate reservoirs of Leikoupo Formation in Pengzhou area, western Sichuan Basin[J]. Oil and Gas Geology, 2018, 39(1): 30-39. doi: 10.11743/ogg20180104 [38] 邱登峰, 周雁, 袁玉松, 柴童. 鄂西渝东区构造裂缝发育特征及力学机制[J]. 海相油气地质, 2016, 21(4):51-59. doi: 10.3969/j.issn.1672-9854.2016.04.006QIU Dengfeng, ZHOU Yan, YUAN Yusong, CAI Tong. Characteristics anmechanism of structural fractures in western Hubei-eastern Chongqing area[J]. Marine Origin Petroleum Geology, 2016, 21(4): 51-59. doi: 10.3969/j.issn.1672-9854.2016.04.006 [39] 高孝巧, 张达. 逆断层控制构造裂缝发育的力学机制模拟[J]. 地质力学学报, 2015, 21(1):47-55. doi: 10.3969/j.issn.1006-6616.2015.01.006GAO XiaoQiao, ZHANG Da. Numerical simulation of structuralfractures controlled by reverse fault[J]. Journal of Geomechanics, 2015, 21(1): 47-55. doi: 10.3969/j.issn.1006-6616.2015.01.006 [40] 李长海, 赵伦, 刘波, 李建新, 陈烨菲, 张宇. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4):31-48.LI Changhai, GHAO Lun, LIU Bo, LI Jianxi, CHEN Huafei, ZHANG Yu. Research status and development trend of fractures in carbonate reservoi[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48. [41] 季宗镇, 戴俊生, 汪必峰. 地应力与构造裂缝参数间的定量关系[J]. 石油学报, 2010, 31(1):68-72. doi: 10.7623/syxb201001011JI Zong Zheng, DAI Junsheng, WANG Bifeng. Quantitative relationship between crustal stress and parameters of tectonic fracture[J]. Acta Petrolei Sinica, 2010, 31(1): 68-72. doi: 10.7623/syxb201001011