• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地太原组致密灰岩储层构造缝地质意义、预测及应用

付勋勋 范立勇 裴文超 赵小会 石磊 董国栋 王怀厂 刘晓鹏 卢子兴 殷亮亮 高星 陈娟萍

付勋勋,范立勇,裴文超,等. 鄂尔多斯盆地太原组致密灰岩储层构造缝地质意义、预测及应用[J]. 中国岩溶,2024,44(0):1-16 doi: 10.11932/karst2024y040
引用本文: 付勋勋,范立勇,裴文超,等. 鄂尔多斯盆地太原组致密灰岩储层构造缝地质意义、预测及应用[J]. 中国岩溶,2024,44(0):1-16 doi: 10.11932/karst2024y040
FU Xunxun, ZHAO Weibo, PEI Wenchao, ZHAO Xiaohui, SHI Lei, DONG Guodong, WANG Huaichang, LIU Xiaopeng, LU Zixin, YIN Liangliang, GAO Xing, CHEN Juanping. Geological significance, prediction, and application of structural fractures in tight limestone reservoirs of the Taiyuan Formation in Ordos Basin[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2024y040
Citation: FU Xunxun, ZHAO Weibo, PEI Wenchao, ZHAO Xiaohui, SHI Lei, DONG Guodong, WANG Huaichang, LIU Xiaopeng, LU Zixin, YIN Liangliang, GAO Xing, CHEN Juanping. Geological significance, prediction, and application of structural fractures in tight limestone reservoirs of the Taiyuan Formation in Ordos Basin[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2024y040

鄂尔多斯盆地太原组致密灰岩储层构造缝地质意义、预测及应用

doi: 10.11932/karst2024y040
基金项目: 中国石油天然气股份有限公司科技攻关项目“鄂尔多斯盆地碳酸盐岩重点层系综合地质研究、目标评价、技术攻关与现场试验”(2022KT0103)
详细信息
    作者简介:

    付勋勋(1983-),男,博士,高级工程师,主要从事石油天然气地质综合研究。E-mail:fxx_cq@petrochina.com.cn

  • 中图分类号: TE122.3

Geological significance, prediction, and application of structural fractures in tight limestone reservoirs of the Taiyuan Formation in Ordos Basin

  • 摘要: 鄂尔多斯盆地太原组灰岩分布范围广泛,厚度大,但因岩性致密,单井产量低,长期以来天然气勘探未获得重大突破。随着研究的深入,发现高产气流井储层段往往受构造裂缝发育程度的控制。对于构造缝是否与储集层的优劣、天然气的成藏富集有关,以往缺少系统分析。本次研究首次系统总结了太原组灰岩构造缝特征,通过单轴载荷下岩石核磁共振(NMR)、CT扫描等技术分析了构造裂缝对储层的影响,剖析了缝网系统在成藏过程中的输导作用,根据研究区地质背景构建了改进的高斯曲率法(IGC)预测有利构造缝的发育区,并在横山地区井位部署中应用。结果表明:1)相对低角度缝、斜交缝,高角度张裂缝充填程度低,有效性好,常贯穿、切割、错动其它类型的裂缝使灰岩储集性能变好,同时形成的缝网系统利于烃类的高效运移;2)构造缝对致密灰岩储层物性有极大贡献作用,岩石物理实验表明,在裂缝发育的情况下,平均孔隙度由2.1%增加到4.2%,增加1倍。裂缝对总孔隙度的贡献率在14.3%~72.7%,平均值43.4%,三种储集岩性中,粉晶灰岩孔隙度增加最大、藻粘结灰岩次之,泥晶灰岩最小;3)改进的高斯曲率法(IGC)可预测有利构造缝的发育区,IGC值越大,高角度张性裂缝越发育,天然气富集条件越有利,该方法在横山地区取得了成功应用。上述认识将进一步指导盆地范围内太原组灰岩下一步的大面积勘探开发。

     

  • 图  1  鄂尔多斯盆地太原组灰岩分布与地层特征

    (a)地层特征 (b)灰岩平面分布

    Figure  1.  Distribution and stratigraphy characteristics of the Taiyuan Formation limestone in Ordos Basin

    (a)Stratigraphy characteristics;(b)Thicknes distribution of Taiyuan limestone

    图  2  鄂尔多斯盆地太原组灰岩储层特征

    (a)生屑粉晶灰岩,J21井,3408.10 m,太原组;(b)藻粘结灰岩,Q2井,2566.88 m,太原组;(c)生屑泥晶灰岩,M61井,2305.58 m,太原组;(d)生物体腔孔,Z4井,2364.4 m,太原组;(e)晶间孔及溶孔,T58井,3414.16 m,太原组;(f)裂缝有少量方解石充填S2井,2337 m,太原组。

    Figure  2.  Limestone reservoir characteristics of the Taiyuan Formation in Ordos Basin

    (a) Biogenic crystal limestone, J21well, 3408.10 m, the Taiyuan Formation; (b) Algal cemented limestone, Q2 well, 2566.88 m, the Taiyuan Formation; (c) Bioclastic mudstone limestone, M61well,2305.58 m, the Taiyuan Formation; (d) Biological cavity, Z4well,2364.4 m, the Taiyuan Formation; (e) Intergranular and dissolved pores, T58 well, 3414.16 m, the Taiyuan Formation; (f) Fractures with small amount of calcite filling, S2 well,2337 m, the Taiyuan Formation.

    图  3  研究区构造位置图与太原组灰岩顶面构造等值线图

    (a)构造位置图 (b)构造顶面位置图

    Figure  3.  Structural location and top structure contour of the Taiyuan Formation in study area

    (a) Structural location map in study area; (b)Top structure contour map in study area

    图  4  太原组灰岩构造缝发育特征

    (a)共轭剪切缝,Q71井,太原组,2860.50 m;(b)共轭剪切缝,成家庄剖面;(c)剪切缝,裂面具阶步擦痕,SH137井,2478.24 m;(d)高角度缝,Q71,太原组,2860.50 m;(e)高角度缝,Q71井,太原组,2853.78 m;(f)网状缝,招贤剖面,2492.12 m;(g)水平缝,骆驼局剖面;(h)高角度缝水平缝相互切割,招贤剖面。

    Figure  4.  Development characteristics of structural fractures in the Taiyuan limestone

    (a) Conjugate shear fractures, Q71 well, the Taiyuan Formation, 2860.50 m; (b) Conjugate shear fractures, Chengjiazhuang section; (c) Shear fractures, step scratches on crack surface, SH137 well, 2478.24 m; (d) High angle fractures, Q71 well, Taiyuan Formation, 2860.50 m; (e) High angle fractures, Q71 well, Taiyuan Formation, 2853.78 m; (f) fracture nets, Zhaoxian profile, 2492.12 m; (g) Horizontal fractures, Luotuoju section; (h) Mutual cutting of high angle fractures and horizontal fractures, Zhaoxian profile.

    图  5  研究区太原组灰岩喉道半径分布频率图

    Figure  5.  Frequency distribution of throat radius of the Taiyuan Formation limestone in study area

    图  6  鄂尔多斯盆地太原组灰岩储层储集空间类型

    (a) 晶间孔发育,J21井,太原组,3413.09 m;(b) 相互孤立的生物体腔孔,G21井,太原组,2364.70 m,(c) 微裂联通接生物体腔壁溶孔,J21井,3413.10 m;(d) 溶孔、晶间孔、微裂缝,CT扫描俯视图,G21井,太原组,3404.13 m;(e) 溶孔、晶间孔、微裂缝,CT扫描侧视图,G21井,太原组,3404.13 m; (f) 孔隙空间立体网络,CT扫描透视图,G21井,太原组,3404.13 m。

    Figure  6.  Reservoir space types of the Taiyuan Formation in Ordos Basin

    (a) Interstitial pore development, J21 well, the Taiyuan Formation, 3413.09 m; (b) Isolated biological cavities, G21 well, the Taiyuan Formation, 2364.70 m; (c) Microfracture connected to biological dissolution pore, J21 well, the Taiyuan Formation, 3413.10 m; (d) Dissolved pores, intergranular pores, microcracks, CT scan(top view) , G21 well, the Taiyuan Formation, 3404.13 m; (e) Dissolved pores, intergranular pores, microcracks, CT scan(side view), G21 well, the Taiyuan Formation, 3404.13 m; (f) Stereoscopic network of pore space, CT scan(perspective view), G21 well, the Taiyuan Formation, 3404.13 m.

    图  7  M29井太原组灰岩岩心样品

    Figure  7.  Limestone core sample of M29 well, the Taiyuan Formation,

    图  8  M29井岩心实验前后核磁共振T2谱

    Figure  8.  Core NMR T2 spectra before and afte rexperiment of M29 well

    图  9  缝网系统贯穿烃源岩与灰岩储集体(成家庄剖面)

    Figure  9.  Source rock and limestone reservoir are connected by fracture nets (Chengjiazhuang section)

    图  10  鄂尔多斯盆地东部太原组灰岩断裂系统平面图(地震解释,主要反映高角度缝)

    Figure  10.  Fault-fracture System of Taiyuan Limestone in the Eastern Ordos Basin (Seismic Interpretation, mainly reflecting high angle fractures)

    图  11  盆地太原组灰岩裂缝中甲烷包裹体、沥青包裹体产状形态特征及激光拉曼光谱

    (a) 构造缝,方解石充填,单偏光5倍,T65井,3 247.29 m;(b) 方解石脉体荧光显示,发黄色光,T65井,3 247.29 m;(c) 单个沥青质包裹体,T65井,3 247.29 m;(d)单个沥青质包裹体激光拉曼光谱,T65井,3 247.29 m;(e)单个甲烷包裹体,Q2井,2 564.01 m;(f) 单个甲烷包裹体激光拉曼光谱,Q2井,2 564.01 m。

    Figure  11.  Occurrence morphology and laser Raman spectroscopy characteristics of methane and asphalt inclusions in the fractures of the Taiyuan limestone in the basin

    (a) structural fracture, filled with calcite, 5x single polarization, T65 well, 3 247.29 m; (b) Calcite vein fluorescence , yellow light, T65 well, 3 247.29 m; (c) Single asphaltene inclusion, T65 well, 3 247.29 m; (d) Laser Raman spectroscopy of single asphaltene inclusion, T65 well, 3 247.29 m; (e) Single methane inclusion, Q2 well, 2 564.01 m; (f) Laser Raman spectroscopy of single methane inclusion , Q2 well, 2 564.01 m

    图  12  盆地太原组灰岩储层裂缝流体包裹体均一温度分布频率图

    Figure  12.  Uniform temperature distribution frequency map of fluid inclusions in fractures of Taiyuan limestone reservoir in the basin

    图  13  鄂尔多斯盆地陕参1井热演化史图(据任战利)

    Figure  13.  Thermal evolution history of Shancan-1 well in Ordos Basin (by Ren Zhanli)

    图  14  111111

    Figure  14.  111111

    图  15  地层弯曲变形与裂缝性质简图

    Figure  15.  Schematic diagram of geological deformation and fracture properties

    图  16  YT1H井太原组测井综合解释成果蓝图

    Figure  16.  Logging Comprehensive Interpretation Results of YT1H Well in Taiyuan Formation

    图  17  YT1H井裂缝倾角直方图

    Figure  17.  Histogram of fracture dip angle in YT1H well

    图  18  横山北地区太原组灰岩勘探成果图

    Figure  18.  Exploration achievement of the Taiyuan limestone in Northern Hengshan

    表  1  太原灰岩典型井裂缝产状统计表

    Table  1.   Statistics of typical well fracture occurrence in the Taiyuan limestone

    井号 SH108 M120 M130 M60 M120 M170 S122 M130
    深度/m 2 403.0 2 555.5 1 646.3 2 555.7 1 645.4 2 243.3 2 206.6 2 310.7
    倾角/° 85 61.0 68.3 60.9 72.4 73.5 74.3 59
    方位角/° 341.5 340.2 324.6 345.0 320.6 329.0 335.1 316
    下载: 导出CSV

    表  2  太原灰岩静态、动态孔隙度对比表

    Table  2.   Comparison of static and dynamic porosity of the Taiyuan Limestone

    样品号 井号 岩性 载荷/MPa 深度/m 核磁孔隙/% 孔隙度
    增加量/%
    裂缝孔隙度
    贡献率/%
    裂缝贡献率
    平均值/%
    静态 动态
    1M29生屑
    粉晶
    灰岩
    22.32 238.82.75.93.254.265.8
    2Y1823.42 317.90.93.32.472.7
    3T5928.43 412.41.96.9572.5
    4M2923.42 245.70.82.21.463.6
    5M120藻粘结
    灰岩
    23.42 549.21.72.30.626.130.9
    6Q323.62 718.81.82.40.625.0
    7M12524.12 728.26.310.84.541.7
    8S5生屑
    泥晶
    灰岩
    27.823 413.32///18.0
    9S222.82 339.91.21.40.214.3
    10Q224.72 568.81.82.30.521.7
    下载: 导出CSV
  • [1] 沈玉林, 郭英海, 李壮福, 魏新善, 贾志刚. 鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J]. 地球学报, 2009, 30(2):187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005

    SHEN Yulin, GUO Yinghai, LI Zhuangfu, WEI Xinshan, JIA Zhigang. Sequence Stratigraphy of Benxi-Taiyuan Formation in Eastern Ordos Basin[J]. Actageoscientica Sinica, 2009, 30(2): 187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005
    [2] 李文厚, 张倩, 李克永, 陈强, 郭艳琴, 马瑶, 冯娟萍. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1):39-52. doi: 10.7605/gdlxb.2021.01.003

    LI Wenhou, ZHANG Qian, LI Keyong, CHEN Qiang, GUO Yanqing, MA Yao, FENG Juanping. Sedimentary evolution of the late Paleozoic in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 39-52. doi: 10.7605/gdlxb.2021.01.003
    [3] 郭艳琴, 赵灵生, 郭彬程, 费世祥, 李文厚, 张倩, 袁珍, 马瑶, 何子琼, 李百强. 鄂尔多斯盆地及周缘地区下二叠统沉积特征[J]. 古地理学报, 2021, 23(1):65-80. doi: 10.7605/gdlxb.2021.01.005

    GUO Yanqin, ZHAO Lingsheng, GUO Bincheng, FEI Shixiang, LI Wenhou, ZHANG Qian, YUAN Zhen, MA Yao, HE Zhiqiong, LI Baiqiang. Sedimentary characteristics of the lower Permian in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 65-80. doi: 10.7605/gdlxb.2021.01.005
    [4] 兰朝利, 张君峰, 陶维祥, 张永忠, 杨明慧 , 王金秀. 鄂尔多斯盆地神木气田太原组沉积特征与演化[J]. 地质学报, 2011, 85(4): 533-541.

    LAN Chaoli, ZHANG junfeng, TAO Weixiang, ZAHNG Yongzhong, YANG Minghui, WANG, Jinxiu. Sedimentary Characteristics and Evolution of the Upper Carboniferous Taiyuan Formation, Shenmu Gasfield, Northeastern Ordos Basin[J]. Aata Geologica Sinica, 2011, 85(4): 533-541.
    [5] 蒙晓灵, 张宏波, 冯强汉, 张保国, 王彩丽, 王准备. 鄂尔多斯盆地神木气田二叠系太原组天然气成藏条件[J]. 石油与天然气地质, 2013, 34(1):37-41. doi: 10.11743/ogg20130105

    MENG Xiaoling, ZHANG Hongbo, FENG Qianghan, ZHANG Baoguo, WANG Caili, WANG Zhunbei. Gas accumulation conditions of the Permian Taiyuan Formation in Shenmu gas field, Ordos Basin[J]. Oil&Gas Geology, 2013, 34(1): 37-41. doi: 10.11743/ogg20130105
    [6] 杨华, 刘新社, 闫小雄, 张辉. 鄂尔多斯盆地神木气田的发现与天然气成藏地质特征[J]. 天然气工业, 2015, 35(06):1-13. doi: 10.3787/j.issn.1000-0976.2015.06.001

    YANG Hua, LIU Xinshe, YAN Xiaoxiong, ZHANG Hui. The Shenmu Gas Field in the Ordos Basin: Its discovery and reservoir-forming geological characteristics[J]. Natural Gas Industry, 2015, 35(06): 1-13. doi: 10.3787/j.issn.1000-0976.2015.06.001
    [7] 张国栋, 朱静昌, 王益友. 华北中-西部地区晚石炭世太原组碳酸盐岩沉积环境[J]. 地质论评, 1991, 37(5):385-396. doi: 10.3321/j.issn:0371-5736.1991.05.001

    ZHANG Guodong, ZHU Jingchang, WANG Yiyou. Depositional environment of carbonate rocks of the late Carboniferous Taiyuan Formation in the western-central part of North China[J]. Georeview, 1991, 37(5): 385-396. doi: 10.3321/j.issn:0371-5736.1991.05.001
    [8] 魏新善, 王飞雁, 王怀厂, 李雪梅. 鄂尔多斯盆地东部二叠系太原组灰岩储层特征[J]. 天然气工业, 2005, 25(4):16-18. doi: 10.3321/j.issn:1000-0976.2005.04.006

    WEI Xinshan, WANG Feiyan, WANG Huaichang, LI Xuemei. Characteristics of limestone reservoir of Permian Taiyuan Formation in eastern Ordos Basin[J]. Natural gas industry, 2005, 25(4): 16-18. doi: 10.3321/j.issn:1000-0976.2005.04.006
    [9] 付金华. 鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J]. 地学前缘, 2023, 30(1): 20-29.

    FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin. Earth Science hrontiers, 2023, 30(1): 020-029.
    [10] 沈玉林, 郭英海, 李壮福, 魏新善, 贾志刚. 鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J]. 地球学报, 2009, 30(2):187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005

    SHEN Yulin, GUO Yinghai, LI Zhuangfu, WEI Xinshan, JIA Zhigang. Sequence Stratigraphy of Benxi-Taiyuan Formation in Eastern Ordos Basin[J]. Actageoscientica Sinica, 2009, 30(2): 187-193. doi: 10.3321/j.issn:1006-3021.2009.02.005
    [11] 李文厚, 张倩, 李克永, 陈强 郭艳琴 马瑶 冯娟萍 张道锋. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1):39-52. doi: 10.7605/gdlxb.2021.01.003

    LI Wenhou, ZHANG Qian, LI Keyong, CHEN Qiang, GUO Yanqin, MA Yao, FENG Juanping, ZHANG Daofeng. Sedimentary evolution of the late Paleozoic in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 39-52. doi: 10.7605/gdlxb.2021.01.003
    [12] 郭艳琴, 赵灵生, 郭彬程, 费世祥, 李文厚, 张倩, 袁珍, 马瑶, 何子琼, 李百强. 鄂尔多斯盆地及周缘地区下二叠统沉积特征[J]. 古地理学报, 2021, 23(1):65-80. doi: 10.7605/gdlxb.2021.01.005

    GUO Yanqin, ZHAO Lingsheng, GUO Bincheng, FEI Shixiang, LI Wenhou, ZHANG Qian, YUAN Zhen, MA Yao, HE Zhiqiong, LI Bai qiang. Sedimentary characteristics of the lower Permian in Ordos Basin and its adjacent areas[J]. JOPC, 2021, 23(1): 65-80. doi: 10.7605/gdlxb.2021.01.005
    [13] 何自新, 费安琦, 王同和. 鄂尔多斯盆地演化与油气[M]. 北京: 石油工业出版社, 2003: 155-173.

    HE Zhixin, FEI Anqi, WANG Tonghe. Oil and Gas Evolution in the Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003: 155-173.
    [14] 徐黎明, 周立发. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造及成矿学, 2006, 30(4):455-462.

    XU Liming, ZHOU Lifa. Characteristics of tectonic setting of tectono-stress field of Ordos Basin[J]. Geotectonica Metallogenia, 2006, 30(4): 455-462.
    [15] 张 泓, 孟召平, 何宗莲. 鄂尔多斯煤盆地构造应力场研究[J]. 煤炭学报, 2000, 25(3):1-5.

    ZHANG Hong, MENG Shaoping, HE Zonglian. Study on the tectonic stress fields in the Ordos Coal Basin[J]. Journal of China Coal Society, 2000, 25(3): 1-5.
    [16] Nelson R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. Boston: Gulf Publishing, 2001: 89-94.
    [17] Graham Wall B R, Girbacea R, Mesonjesi A. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J]. AAPG Bulletin, 2006, 90(8): 1227-1249. doi: 10.1306/03280604014
    [18] Poppelreiter M, Balzarini M A, De Sousa P. Structural control on sweet-spot distribution in a carbonate reservoir: Conceptsand 3-D models(Cogollo Group, Lower Cretaceous, Venezuela)[J]. AAPG Bulletin, 2005, 89(12): 1651-1676. doi: 10.1306/08080504126
    [19] 田鹤, 曾联波, 徐翔, 舒志国, 彭勇民 , 毛哲, 罗兵. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483.

    TIAN He, ZENG Lianbo, XU Xiang, SHU Zhiguo, PENG Yongming, MAO Zhe, LUO Bing. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil&Gas Geology, 2020, 41(3): 474-483.
    [20] 童享茂, 钱祥麟. 储层裂缝的研究和分析方法[J]. 石油大学学报(自然科学版), 1994, 18(6): 14-20.

    TONG Xiangmao, QIAN Xiangling. Research and analysis on natural fracture. Journal of the university of Petroleum, China, 1994, 18 (6): 14-20.
    [21] 马军, 房大志, 张培先, 谷红陶, 胡春锋, 卢比, 程轶妍, 高全芳, 万静雅. 渝东南地区阳春沟构造带五峰组-龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7):1117-1131.

    MA Jun, FANG Dazhi, ZHANG Peixian, GU Hongtao, HU Chunfeng, LU Bi, CHEN Yiyan, GAO Quanfang, WAN Jingya. Characteristics and genesis of shale fractures in Wufeng-Longmaxi formations of Yangchungou structural belt in Southeast Chongqing[J]. Natural Gas Geoscience, 2022, 33(7): 1117-1131.
    [22] 范存辉, 李虎, 钟城, 秦启荣, 胡东风, 张羽, 何顺, 张玮. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J]. 石油学报, 2018, 39(4):379-390. doi: 10.7623/syxb201804002

    FAN Cunhui, LI Hu, ZHONG Chen, QIN Qirong, HU Dongfeng, ZHANG Yu, HEShun, ZHANG Wei. Tectonic fracture stagesand evolution model of Longmaxi Formation shale, Dingshan structure, Southeast[J]. Acta Petrolei Sinica, 2018, 39(4): 379-390. doi: 10.7623/syxb201804002
    [23] 张泓, 白清昭, 张笑薇, 高选政, 何宗莲, 李恒堂, 吕志发. 鄂尔多斯聚煤盆地的形成及构造环境[J]. 煤田地质与勘探, 1995, 23(3):1-9.

    ZHANG Hong, BAI Qingzhao, ZHANG Xiaowei, GAO Xuanzheng, HE Zhonglian, LI Hengtang, LV Zhifa. Formation of Ordos Basin and its coal-formation tectonic environment[J]. Coal Field Geology and Exploration, 1995, 23(3): 1-9.
    [24] 姜文, 柏道远, 尹欧, 杨帆, 彭祖武, 钟响, 李彬, 李银敏. 湘中灰山港—煤炭坝地区岩溶发育特征及其构造控制[J]. 中国岩溶, 2022, 41(01):1-12. doi: 10.11932/karst2021y39

    JIANG Wen, BAI Daoyuan, YIN Ou, YANG Fan, PENG Zuwu, ZHONG Xiang, LI Bin, LI Yingming. Characteristics of karst development and its structural control in the Huishangang-Meitanba area of central Hunan[J]. Carsologica Sinica, 2022, 41(01): 1-12. doi: 10.11932/karst2021y39
    [25] 邓兴梁. 裂缝对和田河气田石炭系生屑灰岩段储层的控制作用[J]. 中国岩溶, 2007, 26(3):237-241. doi: 10.3969/j.issn.1001-4810.2007.03.009

    DENG Xing-liang. Role of fracture in controlling the reservoir stratum in the carboniferous bioclastic Limestone member in Hetian river gas field, Tarim basin[J]. Carsologica Sinica, 2007, 26(3): 237-241. doi: 10.3969/j.issn.1001-4810.2007.03.009
    [26] 吴继文, 吴亮君, 吕勇, 王璞珺, 周嘉铭, 林宇, 潘明, 廖家飞, 孟庆鑫. 云南泸水市压扭性构造对银厂坪白云岩岩溶系统发育控制作用[J]. 中国岩溶, 2021, 40(05):793-804. doi: 10.11932/karst20210506

    WU Jiwen, WU Liangjun, LV Yong, WANG Pujun, ZHOU Jiaming, LIN Yu, PAN Ming, LIAO Jiafei, MENG Qingxin. Transpressional structure and its control on development of Yinchangping dolomite karst system in Lushui City, Yunnan[J]. Carsologica Sinica, 2021, 40(05): 793-804. doi: 10.11932/karst20210506
    [27] 张元中, 肖立志. 单轴载荷下岩石核磁共振特征的实验研究, 核电子学与探测技术, 2006, 26(6): 731-734.

    ZHANG Zhongyan, XIAO Lizhi. Experimental study on NMR characteristics in rock under uniaxial loading, Nuclear Electronics &Detection Technology, 2006, 26 (6): 731-734.
    [28] 冯周, 刘瑞林, 应海玲, 何风, 肖红琳. 岩心CT扫描图像分割计算缝洞孔隙度与测井资料处理结果对比研究[J]. 石油天然气学报, 2011, 33(4):100-104. doi: 10.3969/j.issn.1000-9752.2011.04.023

    FENG Zhou, LIU Ruilin, YING Hailin, HE Feng, XIAO Hongling. Comparison of fracture-vugy porosity and logging data interpretaion in CT scanning image Segmentaion[J]. Journal of Oil and Gas Technology, 2011, 33(4): 100-104. doi: 10.3969/j.issn.1000-9752.2011.04.023
    [29] 邓宇林, 郭绪磊, 罗明明, 陈祥勇, 况野, 周宏. 基于扫描电镜和CT成像技术的碳酸盐岩溶蚀作用微观结构和变化规律研究[J]. 中国岩溶, 2022, 41(5):698-707. doi: 10.11932/karst20220503

    DENG Yulin, GUO Xulei, LUO Mingming, CHEN Xiangyong, KUANG Ye, ZHOU Hong. Study on the microstructure and variation law of carbonate rock dissolution based on scanning electron microscopy and CT imaging technology[J]. Carsologica Sinica, 2022, 41(5): 698-707. doi: 10.11932/karst20220503
    [30] 舒晓辉, 张军涛, 李国蓉, 龙胜祥, 吴世祥, 李宏涛. 四川盆地北部栖霞组一茅口组热液白云岩特征与成因[J]. 石油与天然气地质, 2012, 33(3):442-448. doi: 10.11743/ogg20120314

    SHU Xiaohui, ZHANG Juntao, LI Guorong, LONG Shengxiang, LI Hongtao. Characteristics and genesis of hydrothermal dolomites of Qixia and Maokou Formations innorthern Sichuan Basin[J]. Oil& Gas Geology, 2012, 33(3): 442-448. doi: 10.11743/ogg20120314
    [31] Baceta J I, Wright V P, Pujalte, V. Palaeo-mixing zone karst features from Palaeocene of north Spain: criteria for recognizing a potentially widespread but rarely documented diagenetic system[J]. Sedimentary Geology, 2001, 139(3/4): 205-216.
    [32] 王东, 王国芝, 刘树根, 丁代淑. 塔东地区英东2井寒武系一奥陶系储层流体地球化学示踪[J]. 石油与天然气地质, 2012, 33(6):867-876. doi: 10.11743/ogg20120607

    WANG Dong, WANG Guozhi, LIU Shugeng, DING Daishu. Geochemical tracing of the Cambrian-0rdovician reservoir fluid in well Yingdong-2 eastern tarim Basin[J]. Oil& Gas Geology, 2012, 33(6): 867-876. doi: 10.11743/ogg20120607
    [33] 王奕松, 胡瀚文, 石富伦, 林瑞钦, 刘达冬, 冯霞, 张大权, 周喆, 赵福平, 孙钊, 陈祎, 杜威. 黔北地区五峰组—龙马溪组页岩气成藏过程及勘探启示: 来自流体包裹体的证据[J]. 天然气地球科学, 2023, 34(1):140-152.

    WANG Yisong, HU Hanwen, SHI Fulong, LIN Ruiqin, LIU Dadong, FENG Xia, ZHANG Dashu, ZHOU Jie, ZHAO Fuping, SUN Zhao, CHEN Wei, DU Wei. Reservoir-forming process of shale gas in Wufeng-Longmaxi formations in northern Guizhou Province and its exploration implications: Evidence from fluid inclusion[J]. Natural Gas Geoscience, 2023, 34(1): 140-152.
    [34] 任战利, 张盛, 高胜利, 崔军平, 肖媛媛, 肖晖. 鄂尔多斯盆地构造热演化史及其成藏成矿意义[J]. 中国科学(D辑: 地球科学), 2007, 37(增刊Ⅰ):23-32.

    REN Zhanli, ZHANG sheng, GAO Shengli, CUI Junping, XIAO Yuanyuan, XIAO Hui. Tectonic thermal history and its significance on the formation of oil and gas accumulation and minerd deposit in Ordos Basin[J]. Science in China(Series D: Earth Sciences), 2007, 37(SupplementⅠ): 23-32.
    [35] 蔡刚, 孙东, 裴明利, 刘伟方, 龚洪林. 相干体技术及其在油气勘探中的应用[J]. 天然气地球科学, 2006, 17(4): 510-513.

    CAI Gang, SUN Dong, PEi Mingli, LIU Weifang, GONG Honglin. Coherence cube technology and its application in oil and gas exploration [J] Natural Gas Geoscience, 2006, 17 (4): 510-513.
    [36] 赵军, 刘彦斌, 王菲菲, 戢宇强. 碳酸盐岩缝洞型储层类型识别与分类预测[J]. 中国岩溶, 2018, 37(4):584-591. doi: 10.11932/karst20180412

    ZHAO Jun, LIU Yanbin, WANG Feifei, JI Yuqiang. Identification and classification prediction of fractured-vuggy reservoir type in carbonate rocks[J]. Carsologica Sinica, 2018, 37(4): 584-591. doi: 10.11932/karst20180412
    [37] 赵向原, 胡向阳, 肖开华, 贾跃玮. 川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素[J]. 石油与天然气地质, 2018, 39(1):30-39. doi: 10.11743/ogg20180104

    ZHAO Xiangyuan, HU Xiangyang, XIAO Kaihua, JIA Yuewei. Characteristics and major control factors of natural fractures in carbonate reservoirs of Leikoupo Formation in Pengzhou area, western Sichuan Basin[J]. Oil and Gas Geology, 2018, 39(1): 30-39. doi: 10.11743/ogg20180104
    [38] 邱登峰, 周雁, 袁玉松, 柴童. 鄂西渝东区构造裂缝发育特征及力学机制[J]. 海相油气地质, 2016, 21(4):51-59. doi: 10.3969/j.issn.1672-9854.2016.04.006

    QIU Dengfeng, ZHOU Yan, YUAN Yusong, CAI Tong. Characteristics anmechanism of structural fractures in western Hubei-eastern Chongqing area[J]. Marine Origin Petroleum Geology, 2016, 21(4): 51-59. doi: 10.3969/j.issn.1672-9854.2016.04.006
    [39] 高孝巧, 张达. 逆断层控制构造裂缝发育的力学机制模拟[J]. 地质力学学报, 2015, 21(1):47-55. doi: 10.3969/j.issn.1006-6616.2015.01.006

    GAO XiaoQiao, ZHANG Da. Numerical simulation of structuralfractures controlled by reverse fault[J]. Journal of Geomechanics, 2015, 21(1): 47-55. doi: 10.3969/j.issn.1006-6616.2015.01.006
    [40] 李长海, 赵伦, 刘波, 李建新, 陈烨菲, 张宇. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4):31-48.

    LI Changhai, GHAO Lun, LIU Bo, LI Jianxi, CHEN Huafei, ZHANG Yu. Research status and development trend of fractures in carbonate reservoi[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48.
    [41] 季宗镇, 戴俊生, 汪必峰. 地应力与构造裂缝参数间的定量关系[J]. 石油学报, 2010, 31(1):68-72. doi: 10.7623/syxb201001011

    JI Zong Zheng, DAI Junsheng, WANG Bifeng. Quantitative relationship between crustal stress and parameters of tectonic fracture[J]. Acta Petrolei Sinica, 2010, 31(1): 68-72. doi: 10.7623/syxb201001011
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  6
  • HTML浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-16
  • 录用日期:  2024-09-13
  • 修回日期:  2024-09-12
  • 网络出版日期:  2024-12-30

目录

    /

    返回文章
    返回