Study on ecological risk threshold of farmland soil in typical karst region of Guangxi: A case study of Cd
-
摘要: 镉(Cd)是一种对人体有害的非必需元素,也是农田土壤首要污染物,其在土壤-作物系统中生态风险阈值评估具有重要意义。因此,需要立即提出一种能够准确的方法来评估岩溶地区农田土壤Cd生态风险阈值。本文系统采集了广西典型岩溶地区102组水稻作物及其根系土壤,利用Bur Ⅲ分布拟合了广西典型岩溶区农田土壤中Cd的物种敏感性分布曲线(SSD),推导出能够保护95%水稻的土壤Cd安全阈值。结果表明,研究区土壤全量Cd超标率90.2%,而水稻籽实Cd仅有8.82%样品超过《食品中污染物限量》(GB
2762 -2022)的限值。利用物种敏感性分布法,推导出土壤pH 5.5~6.5、6.5~7.5和7.5~8.5下保护95%水稻不超标的土壤Cd安全阈值分别为0.22 mg·kg−1,1.08 mg·kg−1和6.4 mg·kg−1,评价结果的推导值正确率随着pH的升高由23.5%显著提高到92.1%。因此,研究结果可以被认为是更准确的评估阈值,为广西典型岩溶地区Cd污染稻田安全生产提供科学参考依据。Abstract: Cadmium (Cd) is a non-essential element that is harmful to human health, and it is a primary pollutant in agricultural soils. It is important to assess an ecological risk threshold of Cd in soil-crop systems. The soils have previously been shown to be anomalously enriched in Cd through geogenic processes in the karst region,Southwestern China. Therefore, a valuable method that could accurately evaluate ecological risk threshold of Cd in agricultural soils in karst areas needs to be proposed immediately. The rice is the most widely cultivated cereal crop that is responsible for the largest human dietary exposure to Cd in Daxin county.In this study, we systematically collected 102 groups of crops of rice and its root soil from a typical karst area in Guangxi Province. The results showed that 90.2% of Cd in soil samples exceeded the screening value in the National Environmental Quality Standard for Soil (GB15618-2018), the Cd content in rice seeds planted in those fields, however, were quite low, and only 8.82% samples exceeded the limit for Contaminants in Food (GB2762 -2022). The results revealed a spatial mismatch in Cd pollution between the soil and rice grains in the study area, and the main results are as follows: (i) slight soil pollution and safe rice; (ii) slight soil pollution and serious rice pollution and (iii) safe soil and serious rice pollution. In the study area, the higher the pH value of rice seed growth soil, the weaker the migration ability of Cd, and the less Cd absorbed or transferred by rice seed. Although the soil Cd form is mainly dominated by the content of bioavailable state, the soil pH is mainly weakly alkaline, which inhibits the absorption of soil Cd by plants, and will not affect food security if the soil pH does not change.It is one of the key reasons for the low Cd concentration in rice with high Cd soil geological background. The current soil environmental quality standard is difficult to accurately evaluate the level of soil Cd pollution in the study area, so the soil environmental quality benchmark should be proposed according to the actual situation.Therefore, based on the species sensitivity distribution method, this study calculated the safety limit for protecting 95% of rice seed soil Cd, and evaluated the actual Cd pollution level in the study area.Based on SSD method, we deduced the pollution risk screening values as 0.4 mg·kg-1, 1.08 mg·kg-1 and 6.4 mg·kg-1 corresponding to soil Cd that protected 95% rice from exceeding the standard under pH 5.5~6.5, 6.5~7.5 and 7.5~8.5, respectively.Compared with the soil environmental quality limits stipulated by GB15618-2018, it can be found that the national standard is not rigorous enough and too broad in the environment of acidic soil (5.57.5) soil environment.With the increase of pH value, the correct rate of derived value increased from 23.5% to 92.1%, while the correct rate of screening value given by national standard decreased from 47.1% to 6.3%. The correct rate of derived value according to the evaluation results increased significantly with the increase of pH, from 23.5% to 92.1%. Therefore, this result could be considered a more accurate assessment threshold, and provide a scientific reference for the safe production of Cd-contaminated rice paddies in typical karst areas of Guangxi.-
Key words:
- karst region /
- soil /
- heavy metals /
- ecological risk threshold /
- Cd
-
表 1 研究区根系土壤中重金属Cd质量浓度特征
Table 1. The content characteristics of heavy metal Cd in root soil of the study area
元素 最小值/
mg·kg-1最大值/
mg·kg-1平均值/
mg·kg-1标准差 变异系数 基于筛选值的
超标率/%基于管控值的
超标率/%Cd 0.244 114.52 6.57 19.52 2.97 90.20 15.69 表 2 根系土中重金属Cd不同形态统计参数(N=46,单位:mg·kg−1)
Table 2. Statistical parameters of different forms of heavy metal Cd in root soil(N=46,unit:mg·kg−1)
名称 残渣态 腐殖酸结合态 离子交换态 强有机结合态 水溶态 碳酸盐结合态 铁锰结合态 范围 0.018~3.40 0.002~1.25 0.034~5.46 0.002~54.70 0.001~0.052 0.024~5.85 0.030~41.30 平均值 0.390 0.133 0.492 1.252 0.004 0.583 1.451 变异系数 1.32 1.52 1.56 6.36 1.72 1.45 4.34 表 3 研究区水稻籽实重金属Cd含量特征
Table 3. The content characteristics of heavy metal Cd in rice seeds of the study area
元素 最小值/ mg·kg−1 最大值/ mg·kg−1 平均值/ mg·kg−1 标准差 变异系数 超标率/% Cd 0.005 1.95 0.09 0.26 2.85 8.82% 表 4 研究区基于Burr Ⅲ拟合根系土Cd的安全阈值及方程参数
Table 4. Safety threshold and equation parameters of root soil Cd fitted based on BurrⅢ in the study area
水田pH范围 b c k R2 HC5 推导土壤Cd生态阈值 GB 15618—2018 5.5<pH≤6.5 86.33 3.37 0.20 0.93 1.1 0.22 0.4 6.5<pH≤7.5 36.61 1.56 0.99 0.93 5.4 1.08 0.6 pH>7.5 169.89 2.84 0.63 0.99 32 6.4 0.8 表 5 不同土壤pH值Cd元素对应的正确区和误判区样品数
Table 5. The number of samples in the correct zone and the wrong zone corresponding to Cd element in different soil pH values
pH变化范围 标准值 正确 误判 5.5~6.5 推导值0.22 4 13 国标筛选值0.4 8 9 6.5~7.5 推导值1.08 12 9 国标筛选值0.6 6 15 >7.5 推导值6.4 58 5 国标筛选值0.8 4 59 -
[1] 王静, 魏恒, 潘波. 中国农田土壤Cd累积分布特征及概率风险评价[J]. 环境科学, 2023, 44(7):4006-4016.WANG Jing, WEI Heng, PAN Bo. Accumulation Characteristics and Probabilistic Risk Assessment of Cd in Agricultural Soils Across China[J]. Environmental Science, 2023, 44(7):4006-4016. [2] DENG Meihua, ZHU Youwei, SHAO Kan, ZHANG Qi, YE Guohua, SHEN Jing. Metals source apportionment in farmland soil and the prediction of metal transfer in the soil-rice-human chain[J]. Journal of Environmental Management, 2020, 260:110092. doi: 10.1016/j.jenvman.2020.110092 [3] KHANAM Rubina, KUMAR Anjani, NAYAK A. K. , SHAHID Md. , TRIPATHI Rahul, VIJAYAKUMAR S. , BHADURI Debarati, KUMAR Upendra, MOHANTY Sangita, PANNEERSELVAM P. , CHATTERJEE Dibyendu, SATAPATHY B. S. , PATHAK H. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health[J]. Science of The Total Environment. 2020, 699: 134330. [4] CHANG Chuanyu, YIN Runsheng, ZHANG Hua, YAO Linjun. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China[J]. Environmental Toxicology and Chemistry, 2019, 38(7):1577-1584. doi: 10.1002/etc.4443 [5] ENYA Osim, LIN Chuxia, QIN Junhao. Heavy metal contamination status in soil-plant system in the Upper Mersey Estuarine Floodplain, Northwest England[J]. Marine Pollution Bulletin, 2019, 146:292-304. doi: 10.1016/j.marpolbul.2019.06.026 [6] DENG Siwei, YU Jiang, WANG Yating, XIE Shiqian, RAN Zongxin, WEI Wei. Distribution, transfer, and time-dependent variation of Cd in soil-rice system: A case study in the Chengdu plain, Southwest China[J]. Soil and Tillage Research, 2019, 195:104367. doi: 10.1016/j.still.2019.104367 [7] RAN Jing, WANG Dejian, WANG Can, ZHANG Gang, ZHANG Hailin. Heavy metal contents, distribution, and prediction in a regional soil-wheat system[J]. Science of the Total Environment, 2016, 544:422-431. doi: 10.1016/j.scitotenv.2015.11.105 [8] 唐豆豆, 袁旭音, 汪宜敏, 季峻峰, 文宇博, 赵万伏. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1):18-26. doi: 10.11654/jaes.2017-0801TANG Dou-dou, YUAN Xu-yin, WANG Yi-min, J. I. Jun-feng, WEN Yu-bo, ZHAO Wan-fu. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 2018, 37(1):18-26. doi: 10.11654/jaes.2017-0801 [9] 陈能场, 郑煜基, 何晓峰, 李小飞, 张晓霞. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(09):1689-1692.Chen Nengchang, Zhang Yuji, He Xiaofeng, Li Xiaofei, Zhang Xiaoxia. analysis of the report on the national gerneral survey of soil contamination[J]. Journal of Agro-Environment science, 2017, 36(09):1689-1692. [10] 罗慧, 刘秀明, 王世杰, 刘方, 李颖. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5):1538-1544.LUO Hui, LIU Xiu-ming, WANG Shi-jie, LIU Fang, L. I. Ying. Pollution characteristics and sources of cadmium in soils of the karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5):1538-1544. [11] LI Cheng, YANG Zhongfang, YU Tao, HOU Qingye, LIU Xu, WANG Jue, ZHANG Qizuan, WU Tiansheng. Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County, Guangxi[J]. Ecotoxicology and Environmental Safety, 2021, 208:111505. doi: 10.1016/j.ecoenv.2020.111505 [12] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准(试行)[S]. 北京, 2018: 2018-06-22.Ministry Of Ecology And China, State Administration For Market State Administration For Market Regulation. Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land (Trial)[S]. Beijing, China, 2018: 2018-06-22. [13] 许芮, 曹石, 刘猛, 张惠, 刘月涵, 吕诗, 段亚军, 张玉坤, 杨志新. 设施黄瓜菜田土壤镉污染预测模型及阈值研究[J]. 中国生态农业学报(中英文), 2020, 28(10):1630-1636.X. U. Rui, CAO Shi, LIU Meng, ZHANG Hui, LIU Yuehan, LYU Shi, DUAN Yajun, ZHANG Yukun, YANG Zhixin. Prediction model and threshold of soil cadmium contamination in cucumber greenhouses[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10):1630-1636. [14] 范琼, 冯剑, 邹冬梅, 酒元达, 苏初连, 吴小芳, 吴彬, 赵敏. 重金属Cd在树仔菜-土壤系统中的富集迁移及安全阈值研究[J]. 中国瓜菜, 2022, 35(11):86-92. doi: 10.3969/j.issn.1673-2871.2022.11.015FAN Qiong, FENG Jian, ZOU Dongmei, JIU Yuanda, S. U. Chulian, W. U. Xiaofang, W. U. Bin, ZHAO Min. Accumulation and transformation of heavy metal Cadmium in Sauropus androgynus-soil system and its safety thresholds[J]. China Cucurbits and Vegetables, 2022, 35(11):86-92. doi: 10.3969/j.issn.1673-2871.2022.11.015 [15] 涂峰, 胡鹏杰, 李振炫, 张绪美, 潘云俊, 孔呈, 孙永泉, 邱一格, 吴龙华, 骆永明. 苏南地区Cd低积累水稻品种筛选及土壤Cd安全阈值推导[J]. 土壤学报. 2023, 60(2): 435-445.T. U. Feng, H. U. Pengjie, L. I. Zhenxuan, ZHANG Xumei, PAN Yunjun, KONG Cheng, SUN Yongquan, QIU Yige, W. U. Longhua, LUO Yongming. Screening of Low-Cd-accumulating Rice Varieties and Derivation of Soil Cd Safety Threshold in Southern Jiangsu[J]. Acta Pedologica Sinica. 2023, 60(2): 435-445. [16] 和君强, 贺前锋, 刘代欢, 黄放, 唐春敏. 土壤镉食品卫生安全阈值影响因素及预测模型 : 以长沙某地水稻土为例[J]. 土壤学报. 2017, 54(5): 1181-1194.H. E. Junqiang, H. E. Qianfeng, LIU Daihuan, HUANG Fang, TANG Chunmin. Major Factors Affecting Threshold of Soil Cd for Food Health Safety and Relevant Prediction Models: A Case Study of Paddy Soil in Changsha[J]. Acta Pedologica Sinica. 2017, 54(5): 1181-1194. [17] 陈艳楠, 钱雨欣, 李志美, 何伟, 徐福留. 中国土壤铜的区域分级基准建立及生态风险评估初探[J]. 环境科学学报, 2023, 43(03):448-458. [18] 张竞元, 王学东, 梁力川, 段桂兰. 土壤中钴的生态安全阈值初步推导[J]. 地学前缘. 2023. [19] WEN Yubo, LI Wei, YANG Zhongfang, ZHANG Qizuan, JI Junfeng. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245:125620. doi: 10.1016/j.chemosphere.2019.125620 [20] 中华人民共和国国土资源部. 土地质量地球化学评价规范[S]. 北京, Ministry of Land and Resources of the People's Republic of China: 2016: 2016/6/12.Ministry Of Land And China. Specification of Land Quality Geochemical Assessment[S]. Beijing, Ministry of Land and Resources of the People's Republic of China: 2016: 2016/6/12. [21] 中华人民共和国国土资源部. 多目标区域地球化学调查规范(1: 250 000)[S]. 北京, 2014.Hua ren min gong Zhong. Specification of Multi-Purpose Regional Geochemical Survey[S]. Beijing, 2014. [22] 中华人民共和国国土资源部. 生态地球化学评价动植物样品分析方法[S]. 北京, 全国国土资源标准化技术委员会, 2014. [23] CAI Limei, ZHOU Yongzhang, MO Liping, LI Huizhen, DOU Lei, ZHANG Jingru, YOU Jing. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China[J]. Environmental Pollution, 2018, 235(Apr.):710-719. [24] RAJ Deep, MAITI Subodh Kumar. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review[J]. Environmental Monitoring and Assessment, 2020, 192(2):108. doi: 10.1007/s10661-019-8060-5 [25] 窦韦强, 安毅, 秦莉, 林大松, 曾庆楠, 夏晴. 土壤pH对镉形态影响的研究进展[J]. 土壤, 2020, 52(03):439-444.DOU Weiqiang, A. N. Yi, QIN Li, LIN Dasong, ZENG Qingnan, XIA Qing. Advances in Effects of Soil pH on Cadmium Form[J]. Soils, 2020, 52(03):439-444. [26] WEN Yubo, LI Wei, YANG Zhongfang, ZHUO Xiaoxiong, GUAN Dong-Xing, SONG Yinxian, GUO Chao, JI Junfeng. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China[J]. Environmental Pollution. 2019: 113645. [27] 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 中国土壤地球化学参数[M]. 北京: 地质出版社. [28] 肖高强, 陈杰, 白兵, 李元彬, 朱能刚. 云南典型地质高背景区土壤重金属含量特征及污染风险评价[J]. 地质与勘探, 2021, 57(5):1077-1086.XIAO Gaoqiang, CHEN Jie, BAI Bing, L. I. Yuanbin, ZHU Nenggang. Content Characteristics and Risk Assessment of Heavy Metals in Soil of Typical High Geological Background Areas, Yunnan Province[J]. Geology and Exploration, 2021, 57(5):1077-1086. [29] ADAMO Paola, IAVAZZO Pietro, ALBANESE Stefano, AGRELLI Diana, De VIVO Benedetto, LIMA Annamaria. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils[J]. Science of the Total Environment, 2014, 500/501:11-22. doi: 10.1016/j.scitotenv.2014.08.085 [30] 李杰, 朱立新, 康志强. 南宁市郊周边农田土壤-农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018, 37(1):43-52.LI Jie, ZHU Lixin, KANG Zhiqiang. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China[J]. Carsologica Sinica, 2018, 37(1):43-52. doi: 10.11932/karst2018y01 [31] 谌金吾, 孙一铭, 杨占南, 张显强, 孙敏. 三峡库区云阳消落带土壤重金属形态及其在植物中的富集和转移[J]. 中国岩溶, 2012, 31(4):415-422.CHEN Jin-wu, SUN Yi-ming, YANG Zhan-nan, ZHANG Xian-qiang, SUN Min. Soil heavy metal's form and their enrichment and transfer in plants in the water level fluctuating zone at Yunyang in Three Gorge reservoir area[J]. Carsologica Sinica, 2012, 31(4):415-422. doi: 10.3969/j.issn.1001-4810.2012.04.010 [32] 余飞, 罗恺, 王佳彬, 李瑜, 周皎, 王锐, 余亚伟, 张云逸. 重庆岩溶地质高背景区土壤-农作物系统重金属累积特征及影响因素[J]. 中国岩溶, 2023, 42(1):71-83.YU Fei, LUO Kai, WANG Jiabin, LI Yu, ZHOU Jiao, WANG Rui, YU Yawei, ZHANG Yunyi. Characteristics and influencing factors of heavy metal accumulation in soil-crop system in the karst area with high geological background of Chongqing[J]. Carsologica Sinica, 2023, 42(1):71-83. doi: 10.11932/karst20230106 [33] 邹佳玲, 辜娇峰, 杨文弢, 周航, 张平, 彭佩钦, 廖柏寒. 不同pH值灌溉水对土壤Cd生物有效性及稻米Cd含量的影响[J]. 环境科学学报, 2017, 37(4):1508-1514.ZOU Jialing, GU Jiaofeng, YANG Wentao, ZHOU Hang, ZHANG Ping, PENG Peiqin, LIAO Bohan. Effects of different pH values of irrigation water on soil Cd bioavailability and Cd content in rice[J]. Acta Scientiae Circumstantiae, 2017, 37(4):1508-1514. DOI:10.13671 /j.hjkxxb.2016.0284 [34] 陈立伟, 杨文弢, 周航, 高子翔, 辜娇峰, 张铭洋, 廖柏寒. 土壤调理剂对土壤-水稻系统Cd、Zn迁移累积的影响及健康风险评价[J]. 环境科学学报, 2018, 38(4):1635-1641.CHEN Liwei, YANG Wentao, ZHOU Hang, GAO Zixiang, GU Jiaofeng, ZHANG Mingyang, LIAO Bohan. Effects of combined amendment on transport and accumulation of Cd and Zn in soil-rice system and the related health risk assessment[J]. Acta Scientiae Circumstantiae, 2018, 38(4):1635-1641. [35] 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 食品中污染物限量[S]. 2022.Hua ren min gong Zhong, Jia shi chang jian Guo. Maximum Levels of Contaminants in Foods[S]. 2022. [36] 张倩, 韩贵琳. 贵州普定喀斯特关键带土壤重金属形态特征及风险评价[J]. 环境科学, 2022, 43(06):3269-3277.ZHANG Qian, HAH Gui-lin. Speciation Characteristics and Risk Assessment of Soil Heavy Metals from Puding Karst Critical Zone, Guizhou Province[J]. Environmental Science, 2022, 43(06):3269-3277. [37] 杨琼, 杨忠芳, 张起钻, 刘旭, 卓小雄, 吴天生, 王磊, 韦雪姬, 季峻峰. 中国广西岩溶地质高背景区土壤-水稻系统Cd等重金属生态风险评价[J]. 中国科学: 地球科学. 2021, 51(08): 1317-1331.Yang Qong, Yang Zhongfang, Zhang Qizhuan, Liu Xu, Zhuo Xiaoxiong, Wu Tiansheng, Wang Lei, Wei Xueji, Ji Junfeng. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China. Science China Earth Sciences, 2021, 64(7): 1126–1139,https://doi.org/10.1007/s11430-020-9763-0 [38] 刘意章, 肖唐付, 熊燕, 宁增平, 双燕, 李航, 马良, 陈海燕. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6):2877-2884.LIU Yi-zhang, XIAO Tang-fu, XIONG Yan, NING Zeng-ping, SHUANG Yan, L. I. Hang, M. A. Liang, CHEN Hai-yan. Accumulation of Heavy Metals in Agricultural Soils and Crops from an Area with a High Geochemical Background of Cadmium, Southwestern China[J]. Environmental Science, 2019, 40(6):2877-2884. [39] LI Xuzhi, DU Junyang, SUN Li, ZHANG Ya, FENG Yanhong, ZHENG Liping, WANG Guoqing, HUANG Xinghua. Derivation of Soil Criteria of Cadmium for Safe Rice Production Applying Soil–Plant Transfer Model and Species Sensitivity Distribution[J]. International Journal of Environmental Research and Public Health, 2022, 19(14):8854. doi: 10.3390/ijerph19148854 [40] 宋静, 许根焰, 骆永明, 高慧, 唐伟. 对农用地土壤环境质量类别划分的思考: 以贵州马铃薯产区Cd风险管控为例[J]. 地学前缘, 2019, 26(06):192-198.Song Jing, Xu Genyan, Luo Yongming, Gao Hui, Tang Wei. some thoughts on the clssification of soil environmental quality for agricultural land: taking risk control of Cd in potato producing area of Guizhou as an example[J]. Earth Science Frontiers, 2019, 26(06):192-198. [41] LI Lijun, JIANG Bao, LI Kun, LI Jumei, MA Yibing. Accurate derivation and modelling of criteria of soil extractable and total cadmium for safe wheat production[J]. Ecotoxicology and Environmental Safety, 2023, 261:115092. doi: 10.1016/j.ecoenv.2023.115092