Water eco-physiological adaptability of Hemiboea subcapitata in heterogeneous habitats in the Dehang karst valley
-
摘要: 以湘西世界地质公园德夯岩溶河谷内克隆植物半蒴苣苔(Hemiboea subcapitata)为材料,测定其生长、形态与光合水分生理指标,探究其对德夯岩溶台地河谷演化中形成的三类异质生境(峡谷岩壁表面、风化碎裂岩表和河岸有机质层)的水分生理生态适应性。结果显示:(1)异质生境中半蒴苣苔单(分)株叶片自然含水量仅有较小差异(< 2%),而相对含水量和自然饱和亏则无显著差异;异质生境中叶片水分需求随基质含水量降低而明显增加,但叶片水势也随之显著降低。(2)单株生长差异大但群体累积生物量无明显差异。如峡谷岩壁表面单株的株高和叶面积均显著高于河岸有机质层单株,但群体累积株高、累积叶面积差异不显著。(3)单株外部形态变化显著,匍匐茎长度、直径和根着生密度均呈现峡谷岩壁表面>风化碎裂岩表>河岸有机质层的趋势;峡谷岩壁表面单株叶片比河岸有机质层单株平均增厚近60 μm,比叶面积则降低至其78.2%,气孔密度则显著降低至其66%。(4)光合生理指标中,叶片气孔限制值随叶片水势降低而显著增加,同时气孔导度明显提升,故而胞间CO2浓度并无明显变化,但峡谷岩壁表面单株叶片的净光合速率仅达到河岸有机质层单株叶片的69.6%。(5)水分亏缺最多的峡谷岩壁表面单株叶片水分利用效率却最低(3.029 ± 0.461 μmol CO2·mmol−1 H2O),仅为河岸有机质层单株的73%。表明,半蒴苣苔可通过自身水分维持机制来保证岩溶异质生境中单株水分的相对稳定,并以增加根系密度、匍匐茎长度、叶片厚度和重量,减少气孔密度等形态可塑性来适应干旱的岩溶岩壁生境,通过增加气孔导度保持蒸腾拉力来维持胞间CO2浓度,以高耗水来维持生长状态相对稳定的方式达成对岩溶河谷水分异质性生境的适应。Abstract:
The Dehang canyon of Xiangxi UNESCO Global Geopark is cut by the runoff of streams. As a unique karst landform, it is an ideal area for studying plant species diversity and ecological adaptability. Collecting the clone plants, Hemiboea subcapitata, as samples from the Dehang karst valley in Xiangxi Global Geopark, this study measured their growth, morphology, and photosynthetic and water physiological indicators. On this basis, this study explored the water eco-physiological adaptability of the plants to three types of heterogeneous habitats formed during the evolution of the Dehang karst valley. These three habitats are canyon karst walls slightly weathering after water erosion without soil covering, bank weathered rocks with little soil covering and bank soil organic horizons highly weathering with soil covering. The results show as follows. (1) There was only a small difference (< 2%) in the natural water content in ramet leaves of H. subcapitata in heterogeneous habitats, while there is no significant difference in terms of relative water content and natural saturation deficit. It is proved that they not only have a strong water maintenance mechanism but also have no obvious difference in their recovery ability after drought. The lowest water potential of canyon karst walls was -1.630 ± 0.047 Mpa, and the highest water potential of bank soil organic horizons was −0.705 ± 0.025 Mpa. It is obvious that, in heterogeneous habitats, the water demand of ramet leaves increased significantly with the decrease of the matrix water content, but the water potential of leaves decreased significantly. (2) There was a significant difference in ramet growth but no significant difference in total biomass. For example, the plant heights and leaf areas of ramets on the surfaces of canyon karst walls were significantly higher than those in bank soil organic horizons, but there was no significant difference in the cumulative height and leaf area of total population. (3) The morphological changes of ramets were significant. Values of lengths, diameters and root densities of stolons were listed as: canyon karst walls>bank weathered rocks>bank soil organic horizons. The leaf thickness on canyon karst walls was nearly 60 μm thicker than that in bank soil organic horizons, while the specific leaf area (SLA) decreased to 78.2%, and the stomatal density significantly reduced to 66%. The highest stomatal density was 2,299 ± 158 mm2 in the habitats of bank soil organic horizons, and the lowest stomatal density was 1,518 ± 98 mm2 in the habitats of canyon karst walls. (4) In terms of photosynthetic parameters, stomatal limit values of leaves increased significantly with the decrease of leaf water potential in different habitats, but stomatal conductance increased significantly at the same time, so the intercellular CO2 concentration did not change significantly. However, the net photosynthesis of ramet leaves on bank soil organic horizons only reached 69.6% of that in bank soil organic horizons. (5) The water use efficiency (WUE) of the habitats of bank soil organic horizons was the highest (4.134 ± 0.333 μmol CO2·mmol−1 H2O). When the water deficit of leaves on canyon karst walls was the highest, the water use efficiency was the lowest (3.029 ± 0.461 μmol CO2·mmol−1 H2O), only 73% of that in bank soil organic horizons. These results indicate that H. subcapitata can ensure the relative water stability of ramets in karst heterogeneous habitats through its own water maintenance mechanism. H. subcapitata can be adapted to the habitats of arid karst rock walls by increasing root density, stolon length, leaf thickness and weight, and by reducing stomatal density and other morphological plasticity. It can also keep intercellular CO2 concentration by increasing stomatal conductance to maintain transpiration pull. At last, it can be adapted to water heterogeneous habitats in karst river valleys by relatively stable growth with higher water consumption. -
图 4 三种生境半蒴苣苔的叶片解剖结构和根茎形态
注:A. 峡谷岩壁表面半蒴苣苔叶片的横切 B. 风化碎裂岩表半蒴苣苔叶片的横切 C. 河岸有机质层半蒴苣苔叶片的横切 D. 峡谷岩壁表面半蒴苣苔叶片的气孔密度 E. 风化碎裂岩表半蒴苣苔叶片的气孔密度 F. 河岸有机质层半蒴苣苔叶片的气孔密度 G. 峡谷岩壁表面半蒴苣苔的根茎形态 H. 风化碎裂岩表半蒴苣苔的根茎形态 I. 河岸有机质层半蒴苣苔的根茎形态
Figure 4. Leaf anatomy and rhizome morphology of H. subcapitata in three habitats
Note: A. transection of H. subcapitata leaf on canyon karst walls; B. transection of H. subcapitata leaf on bank weathered rocks; C. transection of H. subcapitata leaf in bank soil organic horizons; D. stomatal density of H. subcapitata leaf on canyon karst walls; E: stomatal density of H. subcapitata leaf on canyon karst walls; F. stomatal density of H. subcapitata leaf on canyon karst walls; G. rhizome morphology of H. subcapitata on canyon karst walls; H. rhizome morphology of H. subcapitata on bank weathered rocks; I. rhizome morphology of H. subcapitata in bank soil organic horizons
表 1 不同生境环境因子的差异
Table 1. Differences of environmental factors in different habitats
光照强度
Light illumination /Lux空气温度
Air temperature / ℃空气湿度
Air humidity /%基质含水量
Moisture content of matrix /%峡谷岩壁表面 9 053.52 ±10.03a22.83 ± 0.34a 64.02 ± 1.60c 0.36 ± 0.05c 风化碎裂岩表 9 054.26 ±9.96a23.03 ± 0.34b 70.47 ± 1.02b 5.81 ± 0.49b 河岸有机质层 850.30±8.63b 24.04 ± 0.30c 76.04 ± 1.12a 32.54 ± 0.38a 注:同列不同小写字母表示差异显著性(P<0.05),其中基质含水量均为表层基质(0~2 cm)含水量。 Note: Different lowercase letters in the same column indicate significant difference (P<0.05), and the matrix water content is surface matrix (0–2 cm) water content. 表 2 三种生境半蒴苣苔光合气体交换参数及水分利用效率
Table 2. Photosynthetic gas exchange parameters and water use efficiency of H. subcapitata in three habitats
指标 Index 峡谷岩壁表面 风化碎裂岩表 河岸有机质层 水势/MPa −1.630 ± 0.047c −1.015 ± 0.041b −0.705 ± 0.025a 气孔密度/mm2 1518.00 ± 98.00c2198.24 ± 102.53b2299.00 ± 158.00a气孔导度/mol H2O·m−2·s−1 0.178 ± 0.045a 0.175 ± 0.069a 0.154 ± 0.085b 蒸腾速率/mmol H2O·m−2·s−1 1.601 ± 0.108a 1.739 ± 0.173a 1.704 ± 0.217a 胞间CO2浓度/μmol CO2·mol−1 420.988 ± 48.439a 414.436 ± 36.612a 394.325 ± 40.597a 气孔限制值/Ls 0.936 ± 0.031a 0.876 ± 0.086b 0.804 ± 0.080b 净光合速率/μmol CO2·m−2·s−1 4.820 ± 0.537b 6.075 ± 0.468a 6.923 ± 1.663a 水分利用效率/μmol CO2·mmol−1 H2O 3.029 ± 0.461b 3.519 ± 0.377ab 4.134 ± 0.333a 注:同行不同小写字母表示差异显著性(P<0.05)。
Note: Different lowercase letters in the same line indicate significant difference (P<0.05). -
[1] Jiang Zhongcheng, Lian Yanqing, Qin Xiaoqun. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132(1): 1-12. [2] 蒋忠诚, 张晶, 黄超, 容悦冰, 吴亮君. 湘西地质公园岩溶峡谷群成因及其地学意义[J]. 中国岩溶, 2019, 38(2):269-275.JIANG Zhongcheng, ZHANG Jing, HUANG Chao, RONG Yuebing, WU Liangjun. Causes of formation and geo-scientific significance of karst gorge group in Xiangxi geopark[J]. Carsologica Sinica, 2019, 38(2): 269-275. [3] 邓涛. 河谷特殊生境植物多样性特征与生态适应性:以湘西北主要河谷为例[D]. 吉首:吉首大学, 2010.DENG Tao. Plant diversity characteristics and ecological adaptation to canyon special microhabitat in north western Hunan, China[D]. Jishou: Jishou University, 2010. [4] 陈功锡, 邓涛, 张代贵, 李晓腾, 姚碧艳. 湖南德夯风景区峡谷特殊生境植物区系与生态适应性初探[J]. 西北植物学报, 2009, 29(7):1470-1478.CHEN Gongxi, DENG Tao, ZHANG Daigui, LI Xiaoteng, YAO Biyan. Preliminary study on floristic characteristics and ecological adaptability of vascular plants in the special eco-environment of canyon in Dehang‚ Hunan[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1470-1478. [5] 周晓旋, 蔡玲玲, 傅梅萍, 洪礼伟, 沈英嘉, 李庆顺. 红树植物胎生现象研究进展[J]. 植物生态学报, 2016, 40(12):1328-1343. doi: 10.17521/cjpe.2016.0087ZHOU Xiaoxuan, CAI Lingling, FU Meiping, HONG Liwei, SHEN Yingjia, LI Qingshun. Progress in the studies of vivipary in mangrove plants[J]. Chinese Journal of Plant Ecology, 2016, 40(12): 1328-1343. doi: 10.17521/cjpe.2016.0087 [6] 陈鹭真, 林鹏, 王文卿. 红树植物淹水胁迫响应研究进展[J]. 生态学报, 2006, 26(2):586-593. doi: 10.3321/j.issn:1000-0933.2006.02.035CHEN Luzhen, LIN Peng, WANG Wenqing. Mechanisms of mangroves waterlogging resistance[J]. Acta Ecologica Sinica, 2006, 26(2): 586-593. doi: 10.3321/j.issn:1000-0933.2006.02.035 [7] 邓涛, 陈功锡, 张代贵, 魏华. 吉首蒲儿根的繁殖生态学特性及其濒危成因[J]. 生态学报, 2011, 31(15):4318-4326.DENG Tao, CHEN Gongxi, ZHANG Daigui, Wei Hua. The reproductive ecological characteristics of Sinosenecio jishouensis (Compositae) and its endangerment mechanisms[J]. Acta Ecologica Sinica, 2011, 31(15): 4318-4326. [8] 张洁, 陈功锡, 徐亮, 邓涛, 周建军, 张代贵, 孟明明. 吉首蒲儿根的繁育系统及克隆构型[J]. 西北植物学报, 2015, 35(5):948-956.ZHANG Jie, CHEN Gongxi, XU Liang, DENG Tao, ZHOU Jianjun, ZHANG Daigui, MENG Mingming. Breeding system and clonal architecture of Sinosenecio jishouensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 948-956. [9] 徐亮, 陈功锡, 张洁, 张代贵, 朱群英. 河谷内外特殊生境对接骨草形态与细胞的影响[J]. 吉首大学学报(自然科学版), 2013, 34(2):77-83.XU Liang, CHEN Gongxi, ZHANG Jie, ZHANG Daigui, ZHU Qunying. Influence of habitat inside and outside valley on morphology and cytology of Sambucus Chinensis[J]. Journal of Jishou University (Natural Science Edition), 2013, 34(2): 77-83. [10] Xiang Xiaomei, Wang Benzhong, Zhang Jiyuan, Zhang Daigui, Chen Gongxi. Quercus dehangensis: A new species of Quercus (Fagaceae) from Hunan Province, China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1778-1783. [11] 向晓媚, 谭璐, 刘冰, 陈功锡. 湖南德夯风景名胜区植物多样性研究与展望[J]. 吉首大学学报(自然科学版), 2020, 41(5):45-51.XIANG Xiaomei, TAN Lu, LIU Bing, CHEN Gongxi. Research review on plant diversity of Dehang scenic[J]. Journal of Jishou University, 2020, 41(5): 45-51. [12] 张雅君, 马姜明, 苏静, 秦佳双, 莫燕华. 喀斯特石山克隆生长红背山麻杆的生理响应及耐受性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4):151-158.ZHANG Yajun, MA Jiangming, SU Jing, QIN Jiashuang, MO Yanhua. Tolerance evaluation and physiological responses of the clonal plant Alchornea trewioides in karst rocky mountains[J]. Journal of Guangxi Normal University (Natural Science Edition), 2018, 36(4): 151-158. [13] 王龙凤. 石灰岩山地淡竹克隆整合特性及其应用研究[D]. 南昌:江西农业大学, 2017.WANG Longfeng. The characteristics of clonal integration and its application for Phyllostachys glauca in limestone mountain[D]. Nanchang: Jiangxi Agricultural University, 2017. [14] Franklin Scott, Alpert Peter, Salguero Gómez Roberto, Janovsky Zdenek, Herben Tomas, Klimesova limešová Jitka, Douhovnikoff Vladimir. Next-gen plant clonal ecology[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 49: 125601. [15] 刘元生, 陈祖拥, 刘方, 蒲通达. 牧草品种与生物质炭对植草土壤水分的调控效应[J]. 水土保持通报, 2019, 39(3):175-179.LIU Yuansheng, CHEN Zuyong, LIU Fang, PU Tongda. Impacts of different forage species and biochar application on soil moisture[J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 175-179. [16] 刘金炽, 招礼军, 朱栗琼. 遮阴对三种木兰科幼苗生长和光合特性的影响[J]. 广西植物, 2020, 40(8):1159-1168. doi: 10.11931/guihaia.gxzw202001016LIU Jinchi, ZHAO Lijun, ZHU Liqiong. Effects of shading on growth and photosynthetic characteristics of three Magnoliaceae seedlings[J]. Guihaia, 2020, 40(8): 1159-1168. doi: 10.11931/guihaia.gxzw202001016 [17] 张显强, 刘天雷, 从春蕾. 干旱和复水对喀斯特石生穗枝赤齿藓水分及光合生理的影响[J]. 中国岩溶, 2019, 38(6):901-909. doi: 10.11932/karst20190607ZHANG Xianqiang, LIU Tianlei, CONG Chunlei. Effect of alternating wetting-drying on physiological features of water content and photosynthesis of Erythrodontium julaceum (Schwaegr.) Par. in karst habitat[J]. Carsologica Sinica, 2019, 38(6): 901-909. doi: 10.11932/karst20190607 [18] 朱建军, 柏新富, 刘林德. 露点水势仪用于植物活体原位水势测定的技术改进[J]. 植物学报, 2013, 48(5):531-539.ZHU Jianjun, BAI Xinfu, LIU Linde. Improved protocol for the in situ measurement of water potential of plants with a thermocouple psychrometer[J]. Chinese Bulletin of Botany, 2013, 48(5): 531-539. [19] 蒙芳, 曹艳云, 欧芷阳, 谭长强, 庞世龙, 申文辉. 干旱胁迫对蚬木幼苗生长及光合特征的影响[J]. 广西林业科学, 2017, 46(2):186-191.MENG Fang, CAO Yanyun, OU Zhiyang, TAN Changqiang, PANG Shilong, SHEN Wenhui. Effect of drought stress on the growth and photosynthetic characteristics of Excentrodendron hsienmu seedlings[J]. Guangxi Forestry Science, 2017, 46(2): 186-191. [20] 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1):88-98. doi: 10.3724/SP.J.1258.2012.00088LI Yonghua, LU Qi, WU Bo, ZHU Yajuan, LIU Dianjun, ZHANG Jinxin, JIN Zhanhu. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 88-98. doi: 10.3724/SP.J.1258.2012.00088 [21] Levionnois S, Ziegler C, Heuret P, Jansen S, Stahl C, Calvet E, Goret J Y, Bonal D, Coste S. Is vulnerability segmentation at the leaf-stem transition a drought resistance mechanism? A theoretical test with a trait-based model for Neotropical canopy tree species[J]. Annals of Forest Science, 2021, 78: 87. doi: 10.1007/s13595-021-01094-9 [22] 王晓鹏, 叶梅荣, 张雪平, 张龙飞, 景宁宁, 苏伟. 遮荫条件下蕺菜对基质水分变化的生理适应性研究[J]. 湿地科学, 2016, 14(3):446-450.WANG Xiaopeng, YE Meirong, ZHANG Xueping, ZHANG Longfei, JING Ningning, SU Wei. Physiological adaptation of Houttuynia cordata on substrate moisture change under shading condition[J]. Wetland Science, 2016, 14(3): 446-450. [23] 李莹, 曾晓琳, 游明鸿, 刘金平, 蔡捡. 5种川西北沙化地草本植物生态适应策略的差异性[J]. 草业科学, 2016, 33(5):843-850.LI Ying, ZENG Xiaolin, YOU Minghong, LIU Jinping, CAI Jian. Differences in ecological adaptation strategies of five herbaceous plants in sandy land of northwest Sichuan[J]. Pratacultural Science, 2016, 33(5): 843-850. [24] 段洪浪, 吴建平, 刘文飞, 廖迎春, 张海娜, 樊后保. 干旱胁迫下树木的碳水过程以及干旱死亡机理[J]. 林业科学, 2015, 51(11):113-120.DUAN Honglang, WU Jianping, LIU Wenfei, LIAO Yingchun, ZHANG Haina, FAN Houbao. Water relations and carbon dynamics under droughs stress and the mechanisms of drought-induced tree mortality[J]. Scientia Silvae Sinicae, 2015, 51(11): 113-120. [25] 付爱红, 陈亚宁, 李卫红, 张宏锋. 干旱、盐胁迫下的植物水势研究与进展[J]. 中国沙漠, 2005(5):744-749.FU Aihong, CHEN Yaning, LI Weihong, ZHANG Hongfeng. Research advances on plant water potential under drought and salt stress[J]. Journal of Desert Research, 2005(5): 744-749. [26] 莫凌, 黄玉清, 覃家科, 王晓英, 陆树华, 袁维圆. 西南喀斯特地区四种植物水分生理的初步研究[J]. 广西植物, 2008, 28(3):402-406.MO Ling, HUANG Yuqing, QIN Jiake, WANG Xiaoying, LU Shuhua, YUAN Weiyuan. A preliminary study on the water physiology of four plant species in karst area of Southwest China[J]. Guihaia, 2008, 28(3): 402-406. [27] De Wilde M, Sebei Nadia, Puijalon Sara, Bornette Gudrun. Responses of macrophytes to dewatering: Effects of phylogeny and phenotypic plasticity on species performance[J]. Evolutionary Ecology, 2014, 28: 1155-1167. doi: 10.1007/s10682-014-9725-8 [28] 邓云, 王冰, 苏文华, 张光飞, 邓晓保. 干旱胁迫下巨尾桉的形态可塑性和生理响应特征[J]. 西北植物学报, 2010, 30(6):1173-1179.DENG Yun, WANG Bing, SU Wenhua, ZHANG Guangfei, DENG Xiaobao. Phenotypic plasticity and physiological responses of Eucalyptus grandis, E. urophylla seedling under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(6): 1173-1179. [29] 季传泽, 熊康宁, 喻阳华, 张俞, 杨晨. 喀斯特高原石漠化区植物光合特性及其环境响应[J]. 西南农业学报, 2020, 33(4):747-753.JI Chuanze, XIONG Kangning, YU Yanghua, ZHANG Yu, YANG Chen. Photosynthetic characteristics and environmental response of plants in rocky desertification area of karst plateaus[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 747-753. [30] Poorter Hendrik, Niklas Karl J, Reich Peter B, Oleksyn Jacek, Poot Pieter, Mommer Liesje. Biomass allocation to leaves, stems and roots: Meta-analyses of inter specific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50. [31] Guo Dali L, Mitchell Robert J, Hendricks Joseph J. Fine root branch orders respond differentially to carbon source-sink manipulations in a long leaf pine forest[J]. Oecologia, 2004, 140(3): 450-457. [32] Ma Zeqing, Guo Dali, Xu Xingliang, Lu Mingzhen, Bardgett Richard D, Eissenstat David M, McCormack M Luke, Hedin Lars O. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555(7694): 94-97. doi: 10.1038/nature25783 [33] 朱志玲, 李德志, 王绪平, 盛丽娟, 石强. 克隆植物的水分生理整合及其生态效应[J]. 西北植物学报, 2006, 26(12):2602-2614.ZHU Zhiling, LI Dezhi, WANG Xuping, SHENG Lijuan, SHI Qiang. Water physiology integration and its ecological effect of clonal plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2602-2614. [34] Duursm Remko, Barton Craig, Lin Yanshih, Medlyn Belinda, Eamus Derek, Tissue David, Ellsworth David, Mcmuurtrie Ross. The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis[J]. Agricultural and Forest Meteorology, 2014, 189-190(6): 2-10. [35] Hans Lambers, Chapin Francis Stuart, Pons Thijs Leendert. Plant physiological ecology[M]. New York: Springer, 2008. [36] 许大全. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯, 1997, 33(4):241-244.XU Daquan. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4): 241-244. [37] 张正斌, 山仑. 作物水分利用效率和蒸发蒸腾估算模型的研究进展[J]. 干旱地区农业研究, 1997, 15(1):76-81.ZHANG Zhengbin, SHAN Lun. Research development in estimation models of crop water use efficiency and transpiration and evaporation[J]. Agricultural Research in the Arid Areas, 1997, 15(1): 76-81. [38] José Ignacio Querejeta, Hector Estrada Medina, Michael F Allen, Juan J Jimenez Osornio, Rocio Ruenes. Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate[J]. Plant and Soil, 2006, 287(1/2): 187-197. [39] José Ignacio Querejeta, Hector Estrada Medina, Michael F Allen, Juan J Jimenez Osornio, Rocio Ruenes. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate[J]. Oecologia, 2007, 152(1): 26-36. doi: 10.1007/s00442-006-0629-3 [40] 陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展[J]. 生态学报, 2013, 33(2):0317-0326. doi: 10.5846/stxb201112011836CHEN Hongsong, NIE Yunpeng, WANG Kelin. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: A review[J]. Acta Ecologica Sinica, 2013, 33(2): 0317-0326. doi: 10.5846/stxb201112011836 [41] 庞世龙, 欧芷阳, 申文辉, 何峰, 陆国导. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略[J]. 广西植物, 2021, 41(5):707-714.PANG Shilong, OU Zhiyang, SHEN Wenhui, HE Feng, LU Guodao. Leaf function traits variations and adaptive strategies of dominant woody economic plants in karst area of southwest Guangxi[J]. Guihaia, 2021, 41(5): 707-714.