• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黔中磷矿区土壤重金属污染及其生态风险评价

江峰 李强 高峰 吉勤克补子 刘汉武 王若帆

江 峰,李 强,高 峰,等. 黔中磷矿区土壤重金属污染及其生态风险评价[J]. 中国岩溶,2024,43(3):650-660 doi: 10.11932/karst2024y029
引用本文: 江 峰,李 强,高 峰,等. 黔中磷矿区土壤重金属污染及其生态风险评价[J]. 中国岩溶,2024,43(3):650-660 doi: 10.11932/karst2024y029
JIANG Feng, LI Qiang, GAO Feng, JIQIN kebuzi, LIU Hanwu, WANG Ruofan. Heavy metal pollution of soil and its ecological risk evaluation in the phosphate mining area in central Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(3): 650-660. doi: 10.11932/karst2024y029
Citation: JIANG Feng, LI Qiang, GAO Feng, JIQIN kebuzi, LIU Hanwu, WANG Ruofan. Heavy metal pollution of soil and its ecological risk evaluation in the phosphate mining area in central Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(3): 650-660. doi: 10.11932/karst2024y029

黔中磷矿区土壤重金属污染及其生态风险评价

doi: 10.11932/karst2024y029
基金项目: 国家重点研发计划项目(2022YFC3705001-05)、贵州省重大科技成果转化项目(黔科合成果[2023]重大006)、贵州省地质勘查基金项目(DKJJ2021-01号)以及贵州省地矿局科研项目([2022]2号)联合资助
详细信息
    作者简介:

    江峰(1991-),男,在读博士,主要从事岩溶地下水污染勘查与防治研究。E-mail: gs.fjiang23@gzu.edu.cn

    通讯作者:

    吉勤克补子(1984-),男,正高级工程师,主要从事水土污染防治研究。E-mail: 380741064@qq.com

  • 中图分类号: X53;X826

Heavy metal pollution of soil and its ecological risk evaluation in the phosphate mining area in central Guizhou

  • 摘要: 为评价黔中磷矿区土壤重金属污染风险,采用梅花布点法在磷矿区周边区域和无矿区不同地层天然土壤采集24件表层土壤样品,测定Cu、Pb、Zn、As、Hg、Se、Cd、和Cr含量,并采用内梅罗综合污染指数(NPI)、地累积指数(Igeo)以及Hankanson潜在生态危害指数(RI)对磷矿区土壤重金属的污染程度和潜在生态风险进行评价。结果表明,黔中磷矿区土壤中Hg、Se、Cd、As、Pb、Zn和Cr等元素平均含量分别为贵州土壤背景值的37.58倍、24.40倍、19.26倍、18.09倍、2.67倍、2.17倍和1.78倍,各重金属富集特征明显,Cu元素平均含量未超过贵州省土壤背景值。研究区土壤中Hg、Se、Cd、As、Pb、Zn和Cr等元素NPI平均值介于4.59~69.32之间,处于重度污染水平,而Cr和Cu元素NPI平均值分别为1.89和1.21,处于轻度污染水平。研究区Hg元素Igeo平均值为4.45,处于严重至极重污染;As、Se和Cd元素Igeo平均值介于3.35~3.65之间,处于重度污染;Pb、Zn和Cr元素Igeo平均值0.21~0.44之间,处于未污染至中度污染水平,而Cu元素Igeo平均值为−0.83,显示其未受到污染。潜在生态风险评价结果表明,研究区土壤Hg元素处于极强生态风险水平,Cd处于强生态风险水平,Ad处于中等生态风险水平,而Cu、Pb、Zn和Cr均处于轻微风险水平。黔中磷矿区土壤RI平均值为2 285.50,显示出极强生态风险,Hg是最主要的生态风险元素,应引起高度重视。

     

  • 图  1  取样点分布图

    1.碳酸盐岩含水岩组 2.碳酸盐岩夹非碳酸盐岩含水岩组 3.碎屑岩含水岩组 4.变质岩 5.第四系 6.磷化企业 7.取样点位置及编号 8.断层 9.地层界线

    Figure  1.  Distribution of sampling points

    1.water-bearing rock formation comprised of carbonate rock; 2.water-bearing rock formation comprised of carbonate rock and non-carbonate rock; 3. water-bearing rock formation comprised of clastic rock; 4.metamorphic rock; 5.Quaternary; 6.phosphating enterprise; 7. locations and numbers of sampling points; 8.fault; 9.stratigraphic boundary

    图  2  黔中磷矿区土壤重金属元素标准化图解

    Figure  2.  Standardized diagram of heavy metal elements in soil of the phosphate mine area in central Guizhou

    表  1  研究区土壤样品采集清单

    Table  1.   List of soil sample collection in the study area

    序号

    样品编号

    备注
    1 T1 寒武系中统清虚洞组∈2q
    2 T2 寒武系苗岭统至芙蓉统奥陶系下统娄山关组∈3-4O1l
    3 T3 寒武系苗岭统石冷水组∈3sh
    4 T4 三叠系下统夜郎组第二段T1y2
    5 T5 二叠系阳新统栖霞-茅口组P2q-m
    6 T6 震旦系上统灯影组Pt33b1dy
    7 T7 三叠系下统至中统嘉陵江组第三段T1-2j3
    8 T8 三叠系下统至中统嘉陵江组第一段T1-2j1
    9 T9 三叠系中统关岭组第二段T2g2
    10 T10 路发磷石膏堆场下游
    11 T11 川东化工下游
    12 T12 大水工业园区下游
    13 T13 磷矿开采区
    14 T14 开阳化工下游
    15 T15 西洋肥业下游
    16 T16 采石场
    17 T17 寒武系苗岭统至芙蓉统奥陶系下统娄山关组∈3-4O1l
    18 T18 交椅山磷石膏堆场下游
    19 T19 铝土矿开采区
    20 T20 三叠系下统至中统嘉陵江组T1-2j
    21 T21 三叠系下统夜郎组第二段T1y2
    22 T22 三叠系中统关岭组第一段T2g1
    23 T23 寒武系第二统清虚洞组∈2q
    24 T24 明泥湾磷矿开采区
    下载: 导出CSV

    表  2  土壤样品检测方法仪器及其精度表

    Table  2.   Testing methods, instruments and their precision of testing soil samples

    重金属元素

    检测方法

    仪器型号

    精度/mg·kg−1
    检出限/mg·kg−1

    Cu LY/T 3129-2019 森林土壤铜、锌、铁、锰全量的测定电感耦合等离子体发射光谱法 iCAP6300 2.0 0.7
    Pb GB/T 39229-2020 肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定 iCAP6300 9 3.0
    Zn LY/T 3129-2019 森林土壤铜、锌、铁、锰全量的测定电感耦合等离子体发射光谱法 iCAP6300 15 5
    As GB/T 39229-2020 肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定 iCAP6300 6 2
    Hg GB/T 39229-2020 肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定 iCAP6300 6 2
    Se GB/T 39356-2020 肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定 电感耦合等离子体发射光谱法 iCAP6300 15 5
    Cd GB/T 39229-2020 肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定 iCAP6300 6 2
    Cr GB/T 39229-2020 肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定 iCAP6300 6 2.0
    下载: 导出CSV

    表  3  内梅罗综合污染指数法评价分级标准

    Table  3.   Grading criteria of Nemero comprehensive pollution index

    等级
    Pi分级标准
    NPI分级标准
    污染等级
    污染评价
    Pi≤0.7 NPI≤0.7 清洁 无污染
    0.7<Pi≤1.0 0.7<E≤1.0 轻微 基本无污染
    1.0<Pi≤2.0 1.0<RI≤2.0 轻度 轻度污染
    2.0<Pi≤3.0 2.0<RI≤3.0 中度 污染较严重
    Pi>3.0 E>3.0 重度 污染非常严重
    下载: 导出CSV

    表  4  潜在生态风险指数法评价分级标准

    Table  4.   Grading criteria of potential ecological risk index

    分级标准
    等级
    潜在生态风险
    E≤40; RI≤150 轻微
    40<E≤80; 150<RI≤300 中等
    80<E≤160; 300<RI≤600 较强
    160<E≤320; 600<RI1200 很强
    E>320; RI>1200 极强
    下载: 导出CSV

    表  5  黔中磷矿区土壤重金属含量统计表

    Table  5.   Statistics of heavy metal contents in soil of the phosphate mine area in central Guizhou

    重金属元素 样本数N 最小值/mg·kg−1 最大值/mg·kg−1 均值/mg·kg−1 变异系数 土壤背景值/mg·kg−1
    Cu 24 11.00 45.00 25.33 0.36 35.97
    Pb 24 30.00 484.00 65.83 1.37 33.47
    Zn 24 58.00 420.00 141.40 0.61 148.67
    As 24 54.00 620.00 240.60 0.58 13.30*
    Hg 24 0.00 10.00 3.83 0.61 0.10*
    Se 24 0.00 26.00 8.42 1.03 0.35*
    Cd 24 1.00 6.00 2.29 0.51 0.23
    Cr 24 80.00 204.00 145.80 0.23 81.80*
    注:*代表贵州省土壤背景值,来源于夏曾禄著《土壤元素背景值及其研究方法》[25],其余背景值来源于文献[11]。
    Note: * represents soil background in Guizhou Province and it is derived from Xia Zenglu's "Background values of soil element and its research methods". Other background values are derived from an abstract [11].
    下载: 导出CSV

    表  6  黔中磷矿区土壤重金属内梅罗综合污染指数法计算评价结果

    Table  6.   Calculation and evaluation results of Nemerow comprehensive pollution index for heavy metals in soil of the phosphate mine area in central Guizhou

    重金属元素
    内梅罗综合污染指数NPI
    重金属污染评价结果
    Cu 1.02 轻度污染
    Pb 10.32 重污染
    Zn 2.11 中度污染
    As 35.36 重污染
    Hg 75.73 重污染
    Se 55.21 重污染
    Cd 19.75 重污染
    Cr 2.17 中度污染
    下载: 导出CSV

    表  7  黔中磷矿区土壤重金属地累积指数Igeo计算评价结果表

    Table  7.   Calculation and evaluation results of soil heavy metal geo-accumulation index Igeo in the phosphate mine area of central Guizhou

    检测编号
    地累积指数Igeo
    Cu Pb Zn As Hg Se Cd Cr
    2019G-857 −0.62 3.27 0.80 3.85 3.74 3.54 4.12 0.54
    2019G-858 −1.36 −0.13 −1.22 3.08 2.74 2.54 −0.03
    2019G-859 −0.90 −0.36 −1.03 4.30 4.32 0.95 1.54 0.30
    2019G-860 −0.51 0.48 −0.57 3.15 3.74 4.95 3.12 0.45
    2019G-861 −2.29 −0.56 −1.06 2.34 4.32 3.27 3.12 0.73
    2019G-862 −0.95 0.69 0.91 4.68 6.06 3.54 0.41
    2019G-863 −1.51 −0.74 −0.76 3.95 3.74 2.54 −0.03
    2019G-864 −1.00 −0.10 −0.42 3.44 1.95 3.12 0.27
    2019G-865 −0.75 −0.29 −0.48 4.96 2.74 2.54 0.37
    2019G-866 −0.51 0.26 −0.82 4.19 4.32 1.95 2.54 0.17
    2019G-867 −1.36 0.64 −0.98 4.07 2.74 0.95 1.54 0.13
    2019G-868 −0.67 −0.56 −1.13 3.24 3.74 1.54 −0.28
    2019G-869 −1.43 0.33 −0.92 2.46 5.06 1.95 1.54 −0.53
    2019G-870 −1.36 0.16 −0.76 3.41 5.32 4.54 1.54 0.32
    2019G-881 −0.58 −0.26 −0.52 2.53 5.06 4.65 3.12 0.65
    2019G-882 −1.75 −0.19 −1.34 1.44 4.74 3.76 2.54 0.17
    2019G-883 −1.00 0.08 −0.94 2.84 5.54 5.65 3.12 0.59
    2019G-884 −0.95 0.05 −1.37 2.51 5.06 5.27 2.54 0.42
    2019G-885 −2.17 −0.65 −1.94 3.59 4.74 4.86 2.54 0.04
    2019G-886 −1.36 −0.19 −0.65 3.83 5.32 5.41 3.12 0.45
    2019G-887 −0.26 −0.13 −0.64 1.75 4.32 0.95 3.12 0.65
    2019G-888 −1.43 −0.65 −1.59 3.02 5.32 5.54 2.54 0.08
    2019G-889 −2.17 −0.74 −1.33 4.07 5.06 5.04 2.54 −0.62
    2019G-890 −1.67 −0.26 −0.89 3.74 5.32 4.27 1.54 −0.30
    avg. −1.19 0.01 −0.82 3.35 4.48 3.65 2.56 0.21
    评价结果 无污染 未污染至中等
    程度污染
    无污染 重污染 严重至极
    重污染
    重污染 中度至
    重污染
    未污染至中等
    程度污染
    下载: 导出CSV

    表  8  内梅罗综合污染指数法和地累积指数污染评价结果表

    Table  8.   Pollution evaluation results of Nemero comprehensive pollution index and geo-accumulation index

    重金属元素
    内梅罗综合污染指数NPI评价结果
    地累积指数评价结果
    Cu 轻度污染 无污染
    Pb 重污染 未污染至中等程度污染
    Zn 中度污染 无污染
    As 重污染 重污染
    Hg 重污染 严重至极重污染
    Se 重污染 重污染
    Cd 重污染 中度至重污染
    Cr 中度污染 未污染至中等程度污染
    下载: 导出CSV

    表  9  土壤重金属潜在生态风险评价结果表

    Table  9.   Evaluation results of potential ecological risk of soil heavy metal

    样品编号
    单项潜在生态风险指数$ {\mathit{E}}_{\mathit{j}}^{\mathit{i}} $
    综合潜在生态风险指数

    CuPbZnAsHgCdCrRIj
    2019G-8574.8772.302.62216.54800.00782.614.381 883.31
    2019G-8582.926.870.65127.07400.00260.872.93801.31
    2019G-8594.035.830.73295.491 200.00130.433.691 640.21
    2019G-8605.2810.461.01133.08800.00391.304.111 345.24
    2019G-8611.535.080.7275.941 200.00391.304.991 679.56
    2019G-8623.8912.102.83385.714 000.00521.743.994 930.26
    2019G-8632.644.480.89231.58800.00260.872.931 303.39
    2019G-8643.757.021.12162.410.00391.303.62569.23
    2019G-8654.456.121.08466.17400.00260.873.891 142.57
    2019G-8665.288.960.85272.931 200.00260.873.371 752.27
    2019G-8672.9211.650.76252.63400.00130.433.28801.67
    2019G-8684.735.080.69141.35800.00130.432.471 084.75
    2019G-8692.789.410.7982.712 000.00130.432.082 228.21
    2019G-8702.928.370.89159.402 400.00130.433.742 705.75
    2019G-8815.006.271.0586.472 000.00391.304.692 494.79
    2019G-8822.226.570.5940.601 600.00260.873.371 914.23
    2019G-8833.757.920.78107.522 800.00391.304.523 315.80
    2019G-8843.897.770.5885.712 000.00260.874.012 362.83
    2019G-8851.674.780.39180.451 600.00260.873.082 051.24
    2019G-8862.926.570.96213.532 400.00391.304.113 019.39
    2019G-8876.266.870.9650.381 200.00391.304.691 660.46
    2019G-8882.784.780.50121.802 400.00260.873.182 793.91
    2019G-8891.674.480.60251.882 000.00260.871.962 521.45
    2019G-8902.366.270.81200.752 400.00130.432.442 743.08
    AVG. $ {\mathit{E}}_{\mathit{j}}^{\mathit{i}} $3.529.830.95180.921 533.33298.913.562 031.04
    生态风
    险评价
    轻微生
    态风险
    轻微生
    态风险
    轻微生
    态风险
    很强生
    态风险
    极强生
    态风险
    很强生
    态风险
    轻微生
    态风险
    极强生
    态风险
    下载: 导出CSV
  • [1] 刘品祯, 贾亚琪, 程志飞, 杨珍, 杜启露, 吴迪. 不同方法评价喀斯特煤矿区农田土壤重金属生态风险比较[J]. 中国岩溶, 2018, 37(3):371-378. doi: 10.11932/karst20180307

    LIU Pinzhen, JIA Yaqi, CHENG Zhifei, YANG Zhen, DU Qilu, WU Di. Ecological risk assessment of heavy metals in farmland soils around karst coal mining areas: A comparison of various methods[J]. Carsologica Sinica, 2018, 37(3): 371-378. doi: 10.11932/karst20180307
    [2] 张广映, 吴琳娜, 欧阳坤长, 吴攀. 都柳江上游沿岸喀斯特地区土壤重金属污染特征及风险评价[J]. 中国岩溶, 2021, 40(3):495-503.

    ZHANG Guangying, WU Linna, OUYANG Kunchang, WU Pan. Pollution characteristics and risk assessment of heavy metals in soils along the upper reaches of the Duliu river[J]. Carsologica Sinica, 2021, 40(3): 495-503.
    [3] Lin Wenting, Wu Kangming, Lao Zhilang, Hu Wei, Lin Boji, Li Yanliang, Fan Hongbo, Hu Junjie. Assessment of trace metal contamination and ecological risk in the forest ecosystem of dexing mining area in northeast Jiangxi Province, China[J]. Ecotoxicology and Environmental Safety, 2019, 167: 76-82. doi: 10.1016/j.ecoenv.2018.10.001
    [4] 余飞, 罗恺, 王佳彬, 李瑜 , 周皎, 王锐, 余亚伟, 张云逸. 重庆岩溶地质高背景区土壤-农作物系统重金属累积特征及影响因素[J]. 中国岩溶, 2023, 42(1):71-83.

    YU Fei, LUO Kai, WANG Jiabin, LI Yu, ZHOU Jiao, WANG Rui, YU Yawei, ZHANG Yunyi. Characteristics and influencing factors of heavy metal accumulation in soil-crop system in the karst area with high geological background of Chongqing[J]. Carsologica Sinica, 2023, 42(1): 71-83. doi: 10.11932/karst20230106
    [5] 邬光海, 王晨昇, 陈鸿汉. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 2020, 47(6):1838-1852. doi: 10.12029/gc20200619

    WU Guanghai, WANG Chensheng, CHEN Honghan. Eco-environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten-molybdenum mine area in Inner Mongolia[J]. Geology in China, 2020, 47(6): 1838-1852. DOI: 10.12029/gc20200619
    [6] 刘凯栋. 贵州崩塌灾害及其影响因素[J]. 贵州地质, 1993, 10(4):345-349.

    LIU Kaidong. Devolution disaster and its controlling factors in Guizhou[J]. Guizhou Geology, 1993, 10(4): 345-349.
    [7] 丁坚平, 李扬, 褚学伟, 丁振超. 贵州开阳县龙井湾崩塌地质灾害评估及防治[J]. 中国地质灾害与防治学报, 2006, 17(4):21-24. doi: 10.3969/j.issn.1003-8035.2006.04.005

    DING Jianping, LI Yang, CHU Xuewei, DING Zhenchao. Evaluation and prevention of rock fall in Longjingwan‚ Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17(4): 21-24. doi: 10.3969/j.issn.1003-8035.2006.04.005
    [8] 彭红明. 贵州省开阳磷矿洋水矿区崩塌形成机理研究[D]. 成都:成都理工大学, 2012.

    PENG Hongming. Research on formation mechanism of Yangshui mining area collapse of Kaiyang phosphate in Guizhou[D]. Chengdu: Chengdu University of Technology, 2012.
    [9] 杨勇. 贵州开阳磷矿洋水矿区环境地质问题分析[J]. 地球与环境, 2005(Suppl.1):624-626. doi: 10.3969/j.issn.1672-9250.2005.z1.130

    YANG Yong. Evaluating environmental geology of Yangshui phosphorite deposit district in Kaiyang phosphorite mine[J]. Earth and Environment, 2005( Suppl.1): 624-626. doi: 10.3969/j.issn.1672-9250.2005.z1.130
    [10] 黄刚, 郑达. 贵州开阳磷矿山体崩塌形成机理与数值模拟[J]. 中国地质灾害与防治学报, 2013, 24(1):46-50.

    HUANG Gang, ZHENG Da. Research on formation mechanism and numerical simulation of rockfall in Kaiyang phosphorite, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(1): 46-50.
    [11] 石振情, 毕陈权, 谭伟, 成剑波, 周鑫游, 王诗磊. 典型磷矿区表层土壤重金属空间分布特征研究[J]. 化工环保, 2020, 40(4):442-448.

    SHI Zhenqing, BI Chenquan, TAN Wei, CHENG Jianbo, ZHOU Xinyou, WANG Shilei. Spatial distribution characteristics of heavy metals in surface soil of typical phosphate mine area[J]. Environmental Protection of Chemical Industry, 2020, 40(4): 442-448. doi: 10.3969/j.issn.1006-1878.2020.04.017
    [12] 徐小蓉, 张习敏, 唐婧, 牛晓娟, 郝丽丽, 乙引. 瓮福磷矿矿渣和废水中元素成分分析[J]. 贵州大学学报(自然科学版), 2011, 28(5):133-135.

    XU Xiaorong, ZHANG Ximin, TANG Jing, NIU Xiaojuan, HAO Lili, YI Yin. The elements analysis of slag and waste water in Wengfu phosphorite[J]. Journal of Guizhou University (Natural Sciences), 2011, 28(5): 133-135.
    [13] 程馨, 施泽明, 张成江, 倪师军. 贵州开阳磷矿开采对洋水河水体重金属污染与评价[J]. 中国环境监测, 2015, 31(2):78-83. doi: 10.3969/j.issn.1002-6002.2015.02.016

    CHENG Xin, SHI Zeming, ZHANG Chengjiang, NI Shijun. Evaluation of heavy metals pollution to Yangshui river in mining of phosphate rock of Kaiyang phosphate mine in Guizhou[J]. Environmental Monitoring in China, 2015, 31(2): 78-83. doi: 10.3969/j.issn.1002-6002.2015.02.016
    [14] 程馨, 施泽明, 张成江, 倪师军. 开阳磷矿洋水矿区近地表大气降尘中重金属污染特征分析[J]. 矿物学报, 2013, 33(Suppl.2):690-691.

    CHENG Xin, SHI Zeming, ZHANG Chengjiang, NI Shijun. Analysis of heavy metal pollution characteristics in near-surface atmospheric dust in Kaiyang phosphate mine area[J]. Acta Mineralogica Sinica, 2013, 33(Suppl.2): 690-691. DOI: 10.16461/j.cnki.1000-4734.2013.s2.597
    [15] Bouzekri Siham, El Hachimi Moulay Laarbi, Touach Noureddine, El Fadili Hamza, El Mahi Mohammed, Lotfi El Mostapha. The study of metal (As, Cd, Pb, Zn and Cu) contamination in superficial stream sediments around of Zaida mine (High Moulouya-Morocco)[J]. Journal of African Earth Sciences, 2019, 154: 49-58. doi: 10.1016/j.jafrearsci.2019.03.014
    [16] Howari F M, Banat K M. Assessment of Fe, Zn, Cd, Hg, and Pb in the Jordan and Yarmouk river sediments in relation to their physicochemical properties and sequential extraction characterization[J]. Water, Air, and Soil Pollution, 2001, 132: 43-59.
    [17] Li Xin, Yang Hong, Zhang Chang, Zeng Guangming, Liu Yunguo, Xu Weihua, Wu Youe, Lan Shiming. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in Central China[J]. Chemosphere, 2017, 170: 17-24. doi: 10.1016/j.chemosphere.2016.12.011
    [18] Zhuang Qifan, Li Gang, Liu Zhiyong. Distribution, source and pollution level of heavy metals in river sediments from South China[J]. Catena, 2018, 170: 386-396. doi: 10.1016/j.catena.2018.06.037
    [19] 鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47: 1-16.

    BAO Liran, DENG Hai, JIA Zhongmin, LI Yu, DONG Jinxiu, YAN Mingshu, ZHANG Fenglei. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 2020, 47(6): 1625-1636. DOI: 10.12029/gc20200602
    [20] 胡国成, 张丽娟, 齐剑英, 杨剑, 于云江, 郑海, 陈凤, 陈棉彪, 王程程, 黎华寿. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 2015, 24(5):879-885.

    HU Guocheng, ZHANG Lijuan, QI Jianying, YANG Jian, YU Yunjiang, ZHENG Hai, CHEN Feng, CHEN Mianbiao, WANG Chengcheng, LI Huashou. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan mercury mine area, Guizhou Province[J]. Ecology and Environmental Sciences, 2015, 24(5): 879-885.
    [21] 吴健, 王敏, 张辉鹏, 黄宇驰, 徐志豪, 李青青, 陈昊, 黄沈发. 复垦工业场地土壤和周边河道沉积物重金属污染及潜在生态风险[J]. 环境科学, 2018, 39(12):5620-5627.

    WU Jian, WANG Min, ZHANG Huipeng, HUANG Yuchi, XU Zhihao, LI Qingqing, CHEN Hao, HUANG Shenfa. Heavy metal pollution and potential ecological risk of soil from reclaimed industrial sites and surrounding river sediments[J]. Environmental Science, 2018, 39(12): 5620-5627.
    [22] Hakanson Lars. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14: 975-1001. doi: 10.1016/0043-1354(80)90143-8
    [23] 周艳, 陈樯, 邓绍坡, 万金忠, 张胜田, 龙涛, 李群, 林玉锁, 吴运金. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6):2884-2892.

    ZHOU Yan, CHEN Qiang, DENG Shaopo, WAN Jinzhong, ZHANG Shengtian, LONG Tao, LI Qun, LIN Yusuo, WU Yunjin. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in Southwestern China[J]. Environmental Science, 2018, 39(6): 2884-2892.
    [24] 向龙, 刘平辉, 李欣. 基于GIS的华东某铀矿区水冶厂周边稻米中重金属的污染评价及分布差异[J]. 中国科技论文, 2017, 12(3):312-318, 326.

    XIANG Long, LIU Pinghui, LI Xin. GIS-based spatial variablity and pollution evaluation of heavy matal in surrounding of hydrometallurgy plant area of a uranium mining area, East China[J]. China Sciencepaper, 2017, 12(3): 312-318, 326.
    [25] 夏增禄. 土壤元素背景值及其研究方法[M]. 北京:气象出版社, 1987.

    XIA Zenglv. Background values of soil elements and their research methods[M]. Beijing: China Meteorological Press, 1987.
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  46
  • HTML浏览量:  9
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 录用日期:  2024-02-18
  • 修回日期:  2024-01-24
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-06-25

目录

    /

    返回文章
    返回