• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黔中岩溶区地下水水化学来源特征及其影响因素

江峰 吉勤克补子 曹建文 王若帆 赵良杰

江 峰,吉勤克补子,曹建文,等. 黔中岩溶区地下水水化学来源特征及其影响因素[J]. 中国岩溶,2024,43(4):889-899 doi: 10.11932/karst2024y028
引用本文: 江 峰,吉勤克补子,曹建文,等. 黔中岩溶区地下水水化学来源特征及其影响因素[J]. 中国岩溶,2024,43(4):889-899 doi: 10.11932/karst2024y028
JIANG Feng, JIQIN Kebuzi, CAO Jianwen, WANG Ruofan, ZHAO Liangjie. Source characteristics and influencing factors of groundwater hydrochemistry in the karst areas of central Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(4): 889-899. doi: 10.11932/karst2024y028
Citation: JIANG Feng, JIQIN Kebuzi, CAO Jianwen, WANG Ruofan, ZHAO Liangjie. Source characteristics and influencing factors of groundwater hydrochemistry in the karst areas of central Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(4): 889-899. doi: 10.11932/karst2024y028

黔中岩溶区地下水水化学来源特征及其影响因素

doi: 10.11932/karst2024y028
基金项目: 国家重点研发计划项目(2022YFC3705001-05)、贵州省重大科技成果转化项目(黔科合成果[2023]重大006)、贵州省地质勘查基金项目(DKJJ2021-01号)以及贵州省地矿局科研项目([2022]2号)联合资助、岩溶水资源与环境贵州省院士工作站(黔科合平台KXJZ[2024]005)和贵州省地质矿产勘查开发局地质科研项目(黔地矿科合(2024)16号)
详细信息
    作者简介:

    江峰(1991-), 男,在读博士, 从事岩溶地下水污染勘查与防治研究工作。E-mail:gs.fjiang23@gzu.edu.cn

    通讯作者:

    吉勤克补子(1984-),男,正高级工程师,硕士,长期从事岩溶水文地质工作。E-mail:380741064@qq.com

  • 中图分类号: P641.3

Source characteristics and influencing factors of groundwater hydrochemistry in the karst areas of central Guizhou

  • 摘要: 文章基于区域水文地质、环境地质调查成果,对黔中岩溶区43个地下水点进行了枯水期和丰水期水样采集测试,利用地球化学图解及主成分分析(PCA)法,探讨该区枯水期和丰水期岩溶地下水水化学特征、离子来源及其影响因素。结果表明,该区地下水枯水期和丰水期的水化学特征及影响因素一致,水化学类型均以HCO3(SO4)-Ca(Mg)为主,吉布斯图解分析表明研究区岩溶地下水为岩石风化型,水化学组成主要来源于岩石风化淋滤溶解;[(Ca+Mg)/HCO3] - [ SO4/HCO3]图解分析认为研究区可溶性碳酸盐岩主要受碳酸的风化侵蚀作用控制,局部样品受石膏溶解影响显著;丰水期地下水主成分主要受水岩作用过程(PC1)、人类活动(PC2)及工业生产(PC3)等3类因素影响,这三个影响因素能够解释丰水期地下水水化学组分83.7%的特征;枯水期地下水主要受水岩作用过程(PC1*)和人类活动(PC2*)影响,这二类综合因子能够解释枯水期地下水化学组分85.1%的特征。水岩作用过程是该区地下水水化学组分最主要的影响因素。水岩作用主要影响K+、Na+、Ca2+、Mg2+、${\rm{HCO}}_3^{-}$、TP、F、SiO2等8项水质指标,人类活动主要影响NH$_4^{+}$、CODMn及Cl等3项水质指标,而磷矿开采主要影响${\rm{SO}}_4^{2-}$。研究成果深化了对黔中地区岩溶地下水水化学特征的认识,揭示了地下水离子组分来源及影响因素,研究成果对黔中岩溶区地下水资源的合理开发利用与保护具有积极的指导意义。

     

  • 图  1  黔中岩溶地区水文地质简图及取样点分布位置图

    1.取样点及编号 2.碳酸盐岩区 3.碎屑岩区 4.第四系区 5.变质岩区 6.县域界线 7.河流水系 8.水库水域 9.工矿企业 10.工业固废堆场(依比例尺) 11.工业固废堆场 12.污水处理厂 13.垃圾堆场 14.县政府驻地 15.乡镇驻地 16.村寨驻地

    Figure  1.  Hydrogeology map and distribution of sampling sites in the karst areas of cental Guizhou

    1.sampling sites and numbers; 2. carbonate rock zone; 3. clastic rock zone; 4. Quaternary; 5. metamorphic rock zone; 6. the boundary of county; 7. river system; 8. water area of reservoir; 9. industrial and mining enterprises; 10. industrial solid waste dump (on a scale); 11. industrial solid waste dump; 12. sewage treatment plant; 13. dumping site; 14. county government site; 15. township site 16. village site

    图  2  黔中岩溶地区地下水 Piper 三线图

    Figure  2.  Piper diagram of groundwater in the karst areas of central Guizhou

    图  3  黔中岩溶区地下水Gibbs图

    Figure  3.  Gibbs diagram of groundwater in the karst areas of central Guizhou

    图  4  黔中岩溶区地下水${\rm{HCO}}_3^{-}$-(Mg2+/Ca2+)关系图

    Figure  4.  Relationship of Mg2+ /Ca2+ vs.${\rm{HCO}}_3^{-}$ of groundwater in the karst areas of central Guizhou

    图  5  黔中岩溶区地下水[${\rm{SO}}_4^{2-}$/${\rm{HCO}}_3^{-}$]-[Ca2++Mg2+]/${\rm{HCO}}_3^{-}$关系图

    Figure  5.  Relationship of [${\rm{SO}}_4^{2-}$/${\rm{HCO}}_3^{-}$] vs. [Ca2++Mg2+]/${\rm{HCO}}_3^{-}$ of groundwater in the karst areas of central Guizhou

    图  6  丰水期、枯水期地下水主成分图(左-丰水期;右-枯水期)

    Figure  6.  Principal component diagram of groundwater in the dry season and the wet season (left: the wet season; right: the dry season)

    表  1  黔中岩溶区地下水描述性统计结果

    Table  1.   Descriptive statistical results of groundwater in the karst areas of central Guizhou

    离子类别 季节 极小值/mg·L−1 极大值/mg·L−1 均值/mg·L−1 变异系数/% 峰度
    Ca2+ 丰水期 28.58 239.50 56.07 56.40 28.00
    枯水期 20.17 155.50 57.95 38.50 7.65
    Mg2+ 丰水期 6.63 288.00 27.49 151.90 38.33
    枯水期 8.66 326.20 33.72 139.30 38.05
    NH$_4^{+}$ 丰水期 0.02 2.00 0.08 368.80 41.45
    枯水期 0.02 0.48 0.04 204.30 17.29
    K+ 丰水期 0.30 12.70 1.74 130.40 14.04
    枯水期 0.40 20.60 1.87 175.30 27.03
    Na+ 丰水期 0.50 90.00 5.02 275.30 36.16
    枯水期 0.40 115.00 6.10 295.00 33.76
    Cl 丰水期 0.55 27.58 4.44 109.80 11.48
    枯水期 1.47 30.89 5.55 91.70 14.39
    ${\rm{SO}}_4^{2-}$ 丰水期 2.00 220.00 33.23 117.80 11.69
    枯水期 2.00 883.00 74.60 176.80 35.61
    ${\rm{HCO}}_3^{-}$ 丰水期 55.40 1 138.00 235.50 65.30 29.53
    枯水期 34.80 1 295.00 246.50 72.70 29.03
    pH 丰水期 6.63 8.37 7.60 4.30 1.76
    枯水期 6.96 8.44 7.90 4.70 −0.74
    COD 丰水期 0.02 4.77 0.50 149.80 26.34
    枯水期 0.02 4.13 0.48 138.20 22.95
    TP 丰水期 0.02 7.84 0.35 404.50 22.66
    枯水期 0.02 25.50 0.64 603.40 42.97
    SiO2 丰水期 0.21 12.90 3.13 53.20 28.81
    枯水期 2.14 27.80 4.66 86.90 26.66
    F 丰水期 0.10 0.80 0.17 92.80 7.56
    枯水期 0.00 0.84 0.13 92.80 27.00
    下载: 导出CSV

    表  2  KMO 和 Bartlett 检验结果表

    Table  2.   Test results of KMO and Bartlett

    取样足够度的
    Kaiser-Meyer-Olkin 度量
    丰水期 0.67
    枯水期 0.74
    Bartlett 的球形度检验
    近似卡方
    丰水期 746.67
    枯水期 1 150.82
    下载: 导出CSV

    表  3  丰水期地下水特征值、方差百分数和累计方差百分数

    Table  3.   Eigen values, percentages of variance and cumulative percentages of groundwater in the wet season

    成分 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13
    特征值 7.269 2.552 1.055 0.661 0.614 0.329 0.17 0.102 0.095 0.076 0.042 0.03 0.004
    方差百分数/% 55.918 19.628 8.115 5.088 4.725 2.535 1.306 0.788 0.729 0.588 0.324 0.228 0.029
    累计方差百分数/% 55.92 75.55 83.66 88.75 93.48 96.01 97.32 98.10 98.83 99.42 99.74 99.97 100.0
    下载: 导出CSV

    表  4  枯水期地下水特征值、方差百分数和累计方差百分数

    Table  4.   Eigen values, percentages of variance and cumulative percentages of groundwater in the dry season

    成分 PC1* PC2* PC3* PC4* PC5* PC6* PC7* PC8* PC9* PC10* PC11* PC12* PC13*
    特征值 8.971 2.092 0.944 0.407 0.194 0.139 0.080 0.069 0.044 0.035 0.016 0.009 0.000
    方差百分数 69.01 16.09 7.263 3.129 1.492 1.067 0.617 0.531 0.339 0.266 0.126 0.068 0.003
    累计方差百分数 69.01 85.10 92.36 95.49 96.98 98.05 98.67 99.20 99.54 99.80 99.93 99.99 100.0
    下载: 导出CSV
  • [1] 袁道先. 我国西南岩溶石山的环境地质问题[J]. 世界科技研究与发展, 1997, 19(5):41-43.

    YUAN Daoxian. On the environmental and geologic problems of karst mountains and rocks in the South-west China[J]. World Sci-Tech R & D, 1997, 19(5): 41-43.
    [2] 杨平恒, 袁道先, 叶许春, 谢世友, 陈雪彬, 刘子琦. 降雨期间岩溶地下水化学组分的来源及运移路径[J]. 科学通报, 2013, 58(18): 1755-1763.

    YANG Pingheng, YUAN Daoxian, YE Xuchun, XIE Shiyou, CHEN Xuebin, LIU Ziqi. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin, 2013, 58(18): 1755-1763.
    [3] 张彦林, 李生永, 付东林, 崔旭东. 陇东盆地西部岩溶地下水形成机制研究[J]. 中国地质, 2006, 33(6):1393-1399. doi: 10.3969/j.issn.1000-3657.2006.06.024

    ZHANG Yanlin, LI Shengyong, FU Donglin, CHUI Xudong. Formation mechanism of karst groundwater in the western Longdong basin, Northwestern China[J]. Geology in China, 2006, 33(6): 1393-1399. doi: 10.3969/j.issn.1000-3657.2006.06.024
    [4] 袁道先, 薛禹群, 傅家谟. 防止我国西南岩溶地区地下河变成“下水道”的对策与建议[R]. 中国科学院院士建议, 2007, 4: 1-14.
    [5] 管清花, 李福林, 王爱芹, 冯平, 田婵娟, 陈学群, 刘丹. 济南市岩溶泉域地下水化学特征与水环境演化[J]. 中国岩溶, 2019, 38(5):653-662. doi: 10.11932/karst20190501

    GUAN Qinghua, LI Fulin, WANG Aiqin, FENG Ping, TIAN Chanjuan, CHEN Xuequn, LIU Dan. Hydrochemistry characteristics and evolution of karst spring groundwater system in Jinan[J]. Carsologica Sinica, 2019, 38(5): 653-662. doi: 10.11932/karst20190501
    [6] 鲁孟胜, 韩宝平, 武凡, 孙德全, 张兆民. 鲁西南地区高氟地下水特征及成因探讨[J]. 中国地质, 2014, 41(1):294-302. doi: 10.3969/j.issn.1000-3657.2014.01.024

    LU Mengsheng, HAN Baoping, WU Fan, SUN Dequan, ZHANG Zhaomin. Characteristics and genesis of high-fluorine groundwater in southwestern Shandong Province[J]. Geology in China, 2014, 41(1): 294-302. doi: 10.3969/j.issn.1000-3657.2014.01.024
    [7] 朱琳, 苏小四. 吉林西部地区第四系潜水水质影响因素的R型因子分析[J]. 地球科学与环境学报, 2006, 28(1):51-56. doi: 10.3969/j.issn.1672-6561.2006.01.011

    ZHU Lin, SU Xiaosi. Application of R-mode analysis in determining influencing factors of Quaternary unconfined groundwater quality in west area of Jilin Province[J]. Journal of Earth Sciences and Environment, 2006, 28(1): 51-56. doi: 10.3969/j.issn.1672-6561.2006.01.011
    [8] 董维红, 苏小四, 侯光才, 林学钰, 柳富田. 鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J]. 吉林大学学报(地球科学版), 2007, 37(2): 288-292.

    DONG Weihong, SU Xiaosi, HOU Guangcai, LIN Xueyu, LIU Futian. Distribution law of groundwater hydrochemical type in the Ordos Cretaceous Artesian Basin[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(3): 391 398.
    [9] 任坤, 师阳, 李晓春, 蓝家程, 徐尚全. 典型岩溶槽谷区地下水化学特征及地球化学敏感性分析[J]. 中国岩溶, 2014, 33(1):15-21. doi: 10.3969/j.issn.1001-4810.2014.01.003

    REN Kun, SHI Yang, LI Xiaochun, LAN Jiacheng, XU Shangquan. Study of the chemical features and geochemical susceptibility of the groundwater system in a typical karst trough valley[J]. Carsologica Sinica, 2014, 33(1): 15-21. doi: 10.3969/j.issn.1001-4810.2014.01.003
    [10] 冯亚伟, 陈洪年, 卜华, 贾德旺. 羊庄岩溶水系统水化学成因及同位素特征[J]. 中国岩溶, 2019, 38(3):394-403. doi: 10.11932/karst20190309

    FENG Yawei, CHEN Hongnian, BU Hua, JIA Dewang. Hydro-chemical genesis and isotope characteristics of Yangzhuang karst water system[J]. Carsologica Sinica, 2019, 38(3): 394-403. doi: 10.11932/karst20190309
    [11] 樊连杰, 裴建国, 邹胜章, 杜毓超, 卢丽. 重庆市南川区南部岩溶地下水水文地球化学特征[J]. 中国岩溶, 2017, 36(5):697-703.

    FAN Lianjie, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Hydrogeochemical characteristics of karst groundwater in southern Nanchuan district of Chongqing[J]. Carsologica Sinica, 2017, 36(5): 697-703.
    [12] 杨秀丽, 罗维, 裴建国, 犹俊. 贵阳市岩溶地下水水质变化特征浅析[J]. 中国岩溶, 2017, 36(5):713-720.

    YANG Xiuli, LUO Wei, PEI Jianguo, YOU Jun. Analysis of variation characteristics of karst groundwater quality in Guiyang City[J]. Carsologica Sinica, 2017, 36(5): 713-720.
    [13] 杨桂花, 潘晓东, 袁建飞, 邓国仕, 唐业旗. 黔西北裸露岩溶地区水文地球化学特征对土地利用方式的响应研究[J]. 中国岩溶, 2018, 37(4):535-544. doi: 10.11932/karst20180407

    YANG Guihua, PAN Xiaodong, YUAN Jianfei, DENG Guoshi, TANG Yeqi. Response of hydrogeochemical characteristics to land-use modes in exposed karst areas of northwestern Guizhou Province[J]. Carsologica Sinica, 2018, 37(4): 535-544. doi: 10.11932/karst20180407
    [14] 张海月, 杨平恒, 王建力, 蓝家程, 詹兆君, 任娟, 张宇. 城市化对岩溶水系统化学组分演化的影响:以重庆市南山老龙洞地下河为例[J]. 中国岩溶, 2017, 36(4):541-549. doi: 10.11932/karst20170416

    ZHANG Haiyue, YANG Pingheng, WANG Jianli, LAN Jiacheng, ZHAN Zhaojun, REN Juan, ZHANG Yu. Effect of urbanization on the hydrogeochemical evolution of karst groundwater system: A case of the Laolongdong watershed, Chongqing, China[J]. Carsologica Sinica, 2017, 36(4): 541-549. doi: 10.11932/karst20170416
    [15] Chen K P, Jiao J J, Huang J M, Huang R Q. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China[J]. Environmental Pollution, 2007, 147(3): 771-780. doi: 10.1016/j.envpol.2006.09.002
    [16] Cloutier V, Lefebvre R, Therrien R, Savard M M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system[J]. Journal of Hydrology, 2008, 353(3): 294-313.
    [17] 黄科云, 刘德深, 马祖陆, 许丹丹, 欧梦梦, 杨苗清. 云南鹤庆西山岩溶地下水主要离子雨季和旱季对比及来源分析[J]. 地球与环境, 2015, 43(2):183-189.

    HUANG Keyun, LIU Deshen, MA Zhulu, XU Dandan, OU Mengmeng, YANG Miaoqing. Major ion chemistry and their source of karst groundwater from the Heqing west mountain, China during flood and dry seasons[J]. Earth and Environment, 2015, 43(2): 183-189.
    [18] 蒲俊兵, 袁道先, 蒋勇军, 苟鹏飞, 殷建军. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 2010, 21(5):628-636.

    PU Junbing, YUAN Daoxian, JIANG Yongjun, GOU Pengfei, YIN Jianjun. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 2010, 21(5): 628-636.
    [19] 陈静生, 王飞越, 何大伟. 黄河水质地球化学[J]. 地学前缘, 2006, 13(1): 58-73.

    CHEN Jingsheng, WANG Feiyue, HE Dawei. Geochemistry of water quality of the Yellow River basin[J]. Earth Science Frontiers, 2006, 13(1): 58-73.
    [20] Jolliffe I. Principal component analysis[M]. New York, USA: Springer, 1986.
    [21] J Edward Jackson. A user's guide to principal components[M]. New York, USA: A Wiley-Interscience Publication, 1992.
    [22] Sun Jianguo. A note on principal component analysis for multi-dimensional data[J]. Statistics & Probability Letter, 2000, 46(1): 69-73.
    [23] 王松, 夏绍玮. 一种鲁棒主成分分析(PCA)算法[J]. 系统工程理论与实践, 1998, 18(l):9-13. doi: 10.3321/j.issn:1000-6788.1998.01.002

    WANG Song, XIA Shaowei. A robust principal component analysis (PCA) algorithm[J]. Systems Engineering-Theory & Practice, 1998, 18(l): 9-13. doi: 10.3321/j.issn:1000-6788.1998.01.002
    [24] Irie B, Miyake S. Capabilities of three-layered Perceptrons[C]//Proceedings of the IEEE Inter Coof on Neural Networks, 1988(1): 641-648.
    [25] Hanson S. Knowledge representation in connectionist networks. Bell communications Research Technical Report[R]. 1987.
    [26] John I Marden. Some robust estimates of principal components[J]. Statistics & Probability Letter, 1999, 43: 349-359.
    [27] Mohamed N Nounou, Bhavik R Bakshi, Prem K Goel, Shen X T. Improving principal component analysis Bayesian estimation[R]. Proceedings of the American Control Conference Arlington, 2001: 25-27.
    [28] 孟生旺. 用主成份分析法进行多指标综合评价应注意的问题[J]. 统计研究, 1992(4):86-87.
    [29] 陈述云, 张崇莆. 对多指标综合评价的主成分分析方法的改进[J]. 统计研究, 1995(1):35-39.
    [30] 阎慈琳. 关于用主成分分析做综合评价的若干问题[J]. 数理统计与管理, 1998, 17(2):22-25.

    YAN Cilin. On composite evaluation by principal component analysis[J]. Journal of Applied Statistics and Management, 1998, 17(2): 22-25.
    [31] 姜旭平, 马宁辉. PCA方法及其在多准则评估模型中的应用[J]. 系统理论与实践, 1997, 17(4): 110-115.

    JIANG Xuping, MA Ninghui. Research on PCA and it's application in multicriteria evaluation[J]. Systems Engineering-Theory & Practice, 1997, 17(4): 110-115.
    [32] 冯慕华, 潘继征, 柯凡, 李文朝. 云南抚仙湖流域废弃磷矿区水污染现状[J]. 湖泊科学, 2008, 20(6):766-772. doi: 10.3321/j.issn:1003-5427.2008.06.011

    FENG Muhua, PAN Jizheng, KE Fan, LI Wenchao. Water pollution of post-mined lands in Lake Fuxian watershed in Yunnan Province[J]. Journal of Lake Sciences, 2008, 20(6): 766-772. doi: 10.3321/j.issn:1003-5427.2008.06.011
    [33] 朱丹尼, 邹胜章, 周长松, 李录娟, 谢浩. 不同城镇功能区岩溶地下水化学敏感因子识别[J]. 中国岩溶, 2018, 37(4):484-492. doi: 10.11932/karst20180402

    ZHU Danni, ZOU Shengzhang, ZHOU Changsong, LI Lujuan, XIE Hao. Identification of hydrochemical sensitive factors of karst groundwater in different functional urban areas[J]. Carsologica Sinica, 2018, 37(4): 484-492. doi: 10.11932/karst20180402
    [34] Lasaga A C, Soler J M, Ganor J, Burch T E, Nagy K L. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmochimica Acta, 1994, 58(10): 2361-2386. doi: 10.1016/0016-7037(94)90016-7
    [35] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
    [36] Feth J H, Gibbs R J. Mechanisms controlling world water chemistry: Evaporation-crystallization process[J]. Science, 1971, 172(3985): 870-872. doi: 10.1126/science.172.3985.870
    [37] Kilham P. Mechanisms controlling the chemical composition of lakes and rivers: Data from Africa[J]. Limnology and Oceanography, 1990, 35(1): 80-83. doi: 10.4319/lo.1990.35.1.0080
    [38] Négrel P. Geochemical study of a granitic area—the Margeride Mountains, France: Chemical element behavior and 87Sr/86Sr constraints[J]. Aquatic Geochemistry, 1999, 5(2): 125-165. doi: 10.1023/A:1009625412015
    [39] 江峰, 李强, 吉勤克补子, 周亚男. 贵州省岩溶地区饮用天然矿泉水化学特征及其宏量组分来源分析[J]. 贵州地质, 2019, 36(2):173-179. doi: 10.3969/j.issn.1000-5943.2019.02.010

    JIANG Feng, LI Qiang, JI Qinkebuzi, ZHOU Ya'nan. The chemical characteristics of the potable natural mineral water and its major components source analysis of the karst area in Guizhou Province[J]. Guizhou Geology, 2019, 36(2): 173-179. doi: 10.3969/j.issn.1000-5943.2019.02.010
    [40] White W B. Geomorphology and hydrology of karst terrains[M]. New York: Oxford University Press, 1988: 103-1481.
    [41] 黄奇波, 覃小群, 刘朋雨, 蓝芙宁, 张连凯, 苏春田. 乌江中上游段河水主要离子化学特征及控制因素[J]. 环境科学, 2016, 37(5):1779-1787.

    HUANG Qibo, QIN Xiaoqun, LIU Pengyu, LAN Funing, ZHANG Liankai, SU Chuntian. Major ionic features and their controlling factors in the upper-middle reaches of Wujiang river[J]. Environmental Science, 2016, 37(5): 1779-1787.
    [42] 李军, 刘丛强, 李龙波, 李思亮, 王宝利, B Chetelat. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J]. 地球化学, 2010, 39(4):305-313.

    LI Jun, LIU Congqiang, LI Longbo, LI Siliang, WANG Baoli, B Chetelat. The impacts of chemical weathering of carbonate rock by sulfuric acid on the cycling of dissolved inorganic carbon in Changjiang River water[J]. Geochimica, 2010, 39(4): 305-313.
    [43] Barnes R T, Raymond P A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds[J]. Chemical Geology, 2009, 266(3): 327-336.
    [44] Jiang Y. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ13CDIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152(4): 1-11.
    [45] Perrin A S, Probst A, Probst J L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchements: Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3105-3123. doi: 10.1016/j.gca.2008.04.011
    [46] Semhi K, Suchet P A, Clauer N, Probst J L. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry, 2000, 15(6): 865-878. doi: 10.1016/S0883-2927(99)00076-1
    [47] Cartwright I. The origins and behaviour of carbon in a major semiarid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry[J]. Applied Geochemistry, 2010, 25(11): 1734-1745. doi: 10.1016/j.apgeochem.2010.08.020
    [48] Li S L, Calmels D, Han G, Gaillardet J R, Liu C Q. Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3): 189-199.
    [49] 刘丛强, 蒋颖魁, 陶发祥, 郎赟超, 李思亮. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414.

    LIU Congqiang, JIANG Yingkui, TAO Faxiang, LANG Yunchao, LI Siliang. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 2008, 37(4): 404-414.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  35
  • HTML浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回