• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贡嘎山玉龙西高寒钙华地貌对冰川活动的记录

柴沛然 赵学钦 王富东 蒋耀曦 张强 朱和艳

柴沛然,赵学钦,王富东,等. 贡嘎山玉龙西高寒钙华地貌对冰川活动的记录[J]. 中国岩溶,2024,43(3):552-562, 584 doi: 10.11932/karst2024y027
引用本文: 柴沛然,赵学钦,王富东,等. 贡嘎山玉龙西高寒钙华地貌对冰川活动的记录[J]. 中国岩溶,2024,43(3):552-562, 584 doi: 10.11932/karst2024y027
CHAI Peiran, ZHAO Xueqin, WANG Fudong, JIANG Yaoxi, ZHANG Qiang, ZHU Heyan. Records of glacier activities by the alpine travertine landform in the Yulongxi area along Gongga mountain[J]. CARSOLOGICA SINICA, 2024, 43(3): 552-562, 584. doi: 10.11932/karst2024y027
Citation: CHAI Peiran, ZHAO Xueqin, WANG Fudong, JIANG Yaoxi, ZHANG Qiang, ZHU Heyan. Records of glacier activities by the alpine travertine landform in the Yulongxi area along Gongga mountain[J]. CARSOLOGICA SINICA, 2024, 43(3): 552-562, 584. doi: 10.11932/karst2024y027

贡嘎山玉龙西高寒钙华地貌对冰川活动的记录

doi: 10.11932/karst2024y027
基金项目: 国家自然科学基金项目(41672206);国家自然科学基金联合基金项目(U21A2016);广西岩溶动力学重点实验室开放课题基金(KDL&Guangxi202302)
详细信息
    作者简介:

    柴沛然(1994-),硕士研究生,从事第四纪气候研究。E-mail:cprhelloworld@163.com

  • 中图分类号: P931.4

Records of glacier activities by the alpine travertine landform in the Yulongxi area along Gongga mountain

  • 摘要: 文章选取贡嘎山西侧玉龙西断裂带附近的钙华及周边冰碛物为研究对象,在野外调查的基础上,通过卫星高光谱遥感数据进行钙华识别,对钙华进行航空摄影测量,并构建主要钙华体精细化DEM及三维模型,分析钙华分布规律及地貌特征。结果表明:研究区钙华集中分布于玉龙西区域南北向断裂带两侧,沟谷由高向低处延伸,部分残留钙华体长宽比及表面擦痕等形态特征符合鲸背石、羊背石的外观特点。根据XRD半定量测试结果,结合地形特征,推测覆盖于钙华体之上的堆积物可能是冰川活动的产物,冰川活动时期,上部杂谷脑组风化剥蚀的物质随着冰川作用搬运至钙华体之上,活跃的冰川活动导致早期钙华遭受强烈的冰川侵蚀作用,形成冰川侵蚀地貌。

     

  • 图  1  研究区位置及采样点分布图

    a.Ⅰ:大陆性冰川区;Ⅱ:海洋性冰川区,底图为1∶5 000 000冰川、雪被、冻土和泥石流分布图 b.贡嘎山周边主要冰川及分布 c.采样点决支沟JZG d.采样点格晋查GJC

    Figure  1.  Distribution of sampling points and location of the study area

    a.I: Continental Glacier Area; II: Marine Glacier Area (The base map in 1∶5,000,000 presents the distribution of glacier, snow cover, frozen soil, and debris flow b.Main glaciers and their distribution around Gongga mountain c.Sampling point Juezhigou JZG d.Sampling point Gejincha GJC)

    图  2  野外采集数据

    Figure  2.  Field data collection

    图  3  鲸背石形态钙华体三维模型

    Figure  3.  A three-dimensional model of travertine in the morphology of whaleback stone

    图  4  研究区卫星图

    (a.红点标识为钙华体出露位置,数字号码为钙华体编号;b.黄色框选区域的高光谱卫星影像,黄色虚线条为玉龙西断裂,红色斑块为ENVI方解石识别结果)

    Figure  4.  Satellite map of the study area

    (a. red dot: the exposed locations of travertine, number: the number of travertine; b. Hyperspectral satellite images of the yellow boxed area; yellow dashed line: the Yulongxi fault; red patches: identification of ENVI calcite)

    图  5  DEM分析图

    Figure  5.  DEM analysis chart

    图  6  19号羊背石形态钙华体(a)和20号羊背石钙华体(b),19、20号羊背石钙华体局部分布图(c)

    Figure  6.  Comparison of the No.19 sheep back stone travertine (a) and No.20 sheep back stone travertine (b);Local distribution maps for No.19 and No.20(c)

    图  7  钙华地貌冰川活动特征

    (a.钙华形成的羊背石;b.钙华沉积中的冰漂砾;c.钙华上冰溜面;d.钙华上冰溜面及擦痕)

    Figure  7.  Characteristics of glacial activities in travertine landforms

    (a.Sheep back stone formed by travertine; b.Ice debris in travertine; c.Ice slide surfaces on travertine; d.Ice slide surfaces and ice abrasion marks on travertine)

    图  8  决支沟钙华分布图(a)及剖面图(b)(红色圆圈为取样点位置)

    Figure  8.  Distribution map (a) and profile map (b) of travertine in Juezhigou (red circles indicating locations of sampling points)

    图  9  研究区钙华演化模式图

    Figure  9.  Evolution pattern of travertine in the study area

    表  1  采样点野外信息记录

    Table  1.   Field information records of sampling points

    样品编号经度纬度海拔 /m特征描述
    JZG-01
    JZG-02
    JZG-03
    101°39′38.77″
    101°39′36.37″
    101°39′34.03″
    29°33′50.5″
    29°33′51.47″
    29°33′53.08″
    4029.0
    4043.5
    4055.7
    疏松钙华风化物、钙华块与
    灰黑色云母片岩混杂
    GJC-01
    GJC-02
    GJC-03
    101°36′9.01″
    101°36′13.28″
    101°36′14.28″
    29°27′12″
    29°27′7.33″
    29°27′8.26″
    3751.0
    3754.6
    3751.9
    灰白色泥页岩与半固结黏土岩
    下载: 导出CSV

    表  2  高分五号高光谱相机主要技术指标

    Table  2.   Main technical indicators of hyperspectral camera onboard GF-5

    光谱分辨率/nm空间分辨率/m幅宽/km光谱范围/μm
    VNIR:530600.4~2.5
    SWIR:10
    下载: 导出CSV

    表  3  精灵4 RTK功能参数

    Table  3.   Function parameters of Phontom 4 RTK

    最大起飞海拔6 000 m飞行时间约30 min
    影像传感器1 英寸 CMOS;
    有效像素 2 000 万(总像素 2 048 万)
    镜头FOV 84°;
    8.8 mm / 24 mm(35 mm 格式等效);
    光圈 f/2.8 - f/11;
    带自动对焦(对焦距离 1 m - ∞)
    定位精度垂直1.5 cm+1 ppm(RMS);
    水平1 cm+1 ppm(RMS)
    照片最大分辨率4864×3648(4∶3);
    5472×3648(3∶2)
    下载: 导出CSV

    表  4  钙华体延伸方向与坡向夹角统计

    Table  4.   Statistics of the angles between extension direction and slope direction

    钙华编号 夹角/° 坡向 坡度/% 海拔跨度/m 长/m 宽/m 长宽比
    1 8 S 75 4 087~4 266
    2 45 E 65 4 123~4 222
    3 12 SW 56 4 130~4 175 79.6 21.2 3.75∶1
    4 3 NE 57 4 282~4 313 54.0 11.4 4.74∶1
    5 3 NE 54 4 275~4 301 47.8 13.3 3.59∶1
    6 2 NE 55 4 254~4 277 42.0 9.2 4.57∶1
    7 12 E 83 4 293~4 349
    9 20 SE 21 4 292~4 302 48.3 8.1 5.96∶1
    10 24 SE 25 4 283~4 290 28.0 4.5 6.22∶1
    11 21 E 25 4 230~4 246 65.0 17.1 3.80∶1
    12 10 SE 27 4 227~4 241 52.7 16.5 3.19∶1
    17 13 SE 37 4 293~4 339 124.3 35.5 3.50∶1
    18 24 SE 53 4 386~4 409 43.6 8.1 5.38∶1
    19 7 SE 5 4 252~4 255 57.5 10.5 5.48∶1
    20 4 SE 7 4 247~4 250 30.7 12.9 2.38∶1
    24 18 E 33 4 245~4 260 45.2 24.0 1.88∶1
    25 15 E 66 4 371~4 401 44.9 7.8 5.76∶1
    26 5 E 18 4 335~4 356 115.1 24.4 4.72∶1
    平均值 13.67 42.33 59.25 15.00 3.95∶1
    下载: 导出CSV

    表  5  X射线衍射分析结果

    Table  5.   Results of X-ray diffraction analysis

    样品编号 GJC−01 GJC−02 GJC−03 JZG−01 JZG−02 JZG−03
    石英/% 42.4 13.9 37.9 49.9 53.2 53.1
    方解石/% 63.4
    斜绿泥石/% 8.1 7.4 14.1 19.9 14.3 11.8
    伊利石/% 15.0 11.9 26.3
    钠长石/% 21.1 14.0 4.2 6.1 6.5
    正长石/% 0.4 1.3 1.2
    钾长石/% 2.2 2.3
    蒙脱石/% 5.3 1.3 1.5 1.2 3.4 1.5
    堇青石/% 5.1 0.8 1.8
    伊利—蒙脱石/% 0.8 2.1
    白云母/% 1.3 24.1 21.5 25.6
    高岭石/% 0.3 0.2 0.3
    下载: 导出CSV
  • [1] 施雅风, 刘潮海, 王宗太, 刘时银, 叶柏生. 简明中国冰川目录[M]. 上海:上海科学普及出版社, 2005:1-194.
    [2] Kaplan M R, Licht K J, Lamp J L, Winckler G, Schaefer J M, Graly J A, Kassab C M, Schwartz R. Paleoglaciology of the central East Antarctic Ice Sheet as revealed by blue-ice sediment[J]. Quaternary Science Reviews, 2023, 302: 107718.
    [3] Ray Yogesh, Sen Subhajit, Sen Koushick, Beg M Javed. Quantifying the past glacial movements in Schirmacher Oasis, East Antarctica[J]. Polar Science, 2021, 30:100733.
    [4] Priestley S C, Karlstrom K E, Love A J, Crossey L J, Polyak V J, Asmerom Y, Meredith K T, Crow R, Keppel M N, Habermehl M A. Uranium series dating of Great Artesian Basin travertine deposits: Implications for palaeohydrogeology and palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 163-177. doi: 10.1016/j.palaeo.2017.10.024
    [5] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23):2229-2239.

    LIU Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23): 2229-2239.
    [6] Maarten Krabbendam, Neil F Glasser. Glacial erosion and bedrock properties in NW Scotland: Abrasion and plucking, hardness and joint spacing[J]. Geomorphology, 2011, 130(3-4): 374-383.
    [7] David J A Evans, Colm Ó Cofaigh. The sedimentology of the Late Pleistocene Bannow Till stratotype, County Wexford, Southeast Ireland[J]. Proceedings of the Geologists' Association, 2008, 119(3): 329-338.
    [8] 廖海军, 刘巧, 钟妍, 鲁旭阳. 1990—2019年贡嘎山地区典型冰川表碛覆盖变化及其空间差异[J]. 地理学报, 2021, 76(11):2647-2659. doi: 10.11821/dlxb202111004

    LIAO Haijun, LIU Qiao, ZHONG Yan, LU Xuyang. Supraglacial debris-cover change and its spatial heterogeneity in the Mount Gongga, 1990–2019[J]. Acta Geographica Sinica, 2021, 76(11): 2647-2659. doi: 10.11821/dlxb202111004
    [9] Liu Qiao, Zhang Yong. Studies on the dynamics of monsoonal temperate glaciers in Mt. Gongga: A review[J]. Mountain Research, 2017, 35(5): 717-726.
    [10] 何元庆, 张忠林, 姚檀栋, 陈拓, 庞洪喜, 章典. 中国季风温冰川区近代气候变化与冰川动态[J]. 地理学报, 2003(4):550-558. doi: 10.3321/j.issn:0375-5444.2003.04.009

    HE Yuanqing, ZHANG Zhonglin, YAO Tandong, CHEN Tuo, PANG Hongxi, ZHANG Dian. Modern changes of the climate and glaciers in China's monsoonal temperate-glacier region[J]. Acta Geographica Sinica, 2003(4): 550-558. doi: 10.3321/j.issn:0375-5444.2003.04.009
    [11] 苏珍, 梁大兰, 洪明. 贡嘎山海洋性冰川发育条件及分布特征[J]. 冰川冻土, 1993, 15(4):551-558.

    SU Zhen, LIANG Dalan, HONG Ming. Developing conditions, amounts and distributions of glaciers in Gongga mountains[J]. Journal of Glaciology and Geocryology, 1993, 15(4): 551-558.
    [12] 王富东, 赵学钦, 董发勤, Enrico Capezzuoli, Alexander I Malov, 杜杰. 青藏高原东缘九寨沟高寒钙华分类与命名[J]. 中国岩溶, 2021, 40(1):112-124.

    WANG Fudong, ZHAO Xueqin, DONG Faqin, Enrico Capezzuoli, Alexander I Malov, DU Jie. Classification of Alpine-type travertine in Jiuzhaigou valley on the eastern margin of the Qinghai-Tibet Plateau[J]. Carsologica Sinica, 2021, 40 (1): 112-124.
    [13] 陈安泽. 旅游地学大辞典[M]. 北京:科学出版社, 2013.

    CHEN Anze. Dictionary of tourism geotourism[M]. Beijing: Science Press, 2013.
    [14] 郭卫星. 川西北自然风景中钙华景观的形成与发育[J]. 山地研究, 1988, 6(1):54-60.

    GUO Weixing. The formation and development of travertine landscape in natural scenery of northwest Sichuan[J]. Mountain Research, 1988, 6(1): 54-60.
    [15] 周绪纶. 论岷山地区冰缘岩溶[J]. 四川地质学报, 2013, 33(4):479-487.

    ZHOU Xulun. On periglacial karst in the Minshan mountains[J]. Acta Geologica Sichuan, 2013, 33(4): 479-487
    [16] 牛新生, 郑绵平, 刘喜方, 齐路晶. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 2017, 35(6):59-64.

    NIU Xinsheng, ZHENG Mianping, LIU Xifang, QI Lujing. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2017, 35(6): 59-64.
    [17] 王杰, 雷满红, 郑利敏. 山地冰川冰消后(paraglacial)沉积的粒度与石英颗粒表面特征:以贡嘎山东坡为例[J]. 冰川冻土, 2022, 44(4):1150-1164.

    WANG Jie, LEI Manhong, ZHENG Limin. Grain size and quartz grain SEM microtextures of glacial tills and paraglacial deposits: A case study on the eastern slope of Mt.Gongga[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1150-1164.
    [18] 高帅坡. 川西北次级块体内部及其西边界断裂的晚第四纪活动习性[D]. 北京:中国地震局地质研究所, 2021.

    GAO Shuaipo. Late Quaternary paleoseismology and faulting behavior of the internal and western boundary faults of northwest Sichuan Subblock[D]. Beijing: Institute of Geology, China Earthquake Administration, 2021.
    [19] 白卉, 曲洪晔. 遥感DEM分析在新生代火山群提取和识别中的应用[J]. 吉林地质, 2017, 36(3):55-57. doi: 10.3969/j.issn.1001-2427.2017.03.012

    BAI Hui, QU Hongye. Application of remote sensing in the extraction and identification of Cenozoic volcano group based on DEM analysis[J]. Jilin Geology, 2017, 36(3): 55-57. doi: 10.3969/j.issn.1001-2427.2017.03.012
    [20] 刘秦, 晏浩, 肖维阳, 肖瑶, 周率, 谢瑶, 乔雪, 唐亚. 九寨沟火花海堤坝修复后的水化学与钙华沉积研究[J]. 中国岩溶, 2023, 42(3):495-508. doi: 10.11932/karst20230302

    LIU Qin, YAN Hao, XIAO Weiyang, XIAO Yao, ZHOU Shuai, XIE Yao, QIAO Xue, TANG Ya. Water chemistry and tufa deposition on the restored dam of Huohua lake in the Jiuzhai valley[J]. Carsologica Sinica, 2023, 42(3): 495-508. doi: 10.11932/karst20230302
    [21] 曹俊, 郭建强. 松潘黄龙自然保护区第四纪冰期划分与古气候环境分析研究[J]. 四川地质学报, 2001, 21(3):141-146. doi: 10.3969/j.issn.1006-0995.2001.03.004

    CAO Jun, GUO Jianqiang. Quaternary ice age division and paleoclimate and paleoenvironment in the Huanglong Nature Reserve, Songpan[J]. Acta Geologica Sichuan, 2001, 21(3): 141-146. doi: 10.3969/j.issn.1006-0995.2001.03.004
    [22] 王富东, 赵学钦, 张海伟, 董发勤, 代群威, 孙仕勇, 李琼芳, 李刚. 黄龙地区古钙华铀系不平衡法测年[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集, 2017.
    [23] 葛文彬, 范晓, 郭建强, 杨俊义, 曾令新, 吴昊, 彭东, 曹俊, 徐志文, 辜寄蓉. 九寨沟—黄龙核心景区地质环境与水循环系统研究[R]. 四川省地质矿产勘查开发局物探队, 2006.
    [24] 施雅风. 中国第四纪冰期划分改进建议[J]. 冰川冻土, 2002, 24(6):1-12.

    SHI Yafeng. A suggestion to improve the chronology of Quaternary glaciations in China[J]. Journal of Glaciology and Geocryology, 2002, 24 (6): 1-12.
    [25] 易朝路, 崔之久, 熊黑钢. 中国第四纪冰期数值年表初步划分[J]. 第四纪研究, 2005, 25(5):609-619.

    YI Chaolu, CUI Zhijiu, XIONG Heigang. Numerical periods of Quaternary glaciations in China[J]. Quaternary Sciences, 2005, 25(5): 609-619.
    [26] 郭建强, 曹俊. 四川康定县玉龙希钙华景观及其水循环系统[J]. 地球学报, 2009, 30(3):345-353. doi: 10.3321/j.issn:1006-3021.2009.03.008

    GUO Jianqiang, CAO Jun. Yulongxi travertine landscape in Kangding county of Sichuan Province and its related hydrological cycle system[J]. Acta Geoscientia Sinica, 2009, 30(3): 345-353. doi: 10.3321/j.issn:1006-3021.2009.03.008
    [27] 施雅风, 姚檀栋. 中低纬度MIS 3b(54~44ka BP)冷期与冰川前进[J]. 冰川冻土, 2002, 24(1):1-9.

    SHI Yafeng, YAO Tandong. MIS 3b (54–44 ka BP) cold period and glacial advance in middle and low latitudes[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 1-9.
    [28] 李吉均, 冯兆东, 周尚哲. 横断山第四纪冰川作用遗迹[A]//横断山冰川. 北京:科学出版社, 1996:157-173.
    [29] 马秋华. 贡嘎山西坡的第四纪冰川作用[J]. 冰川冻土, 1994, 16(1):60-65.

    MA Qiuhua. Quaternary glaciation on the west slope of Mt.Gongga[J]. Journal of Glaciology and Geocryology, 1994, 16(1): 60-65.
    [30] 于贝贝. 贡嘎山地区古冰川演化序列及其气候驱动机制研究[D]. 兰州: 兰州大学, 2018.

    YU Beibei. Timing and climate drivers of Quaternary glaciations in the Gongga Shan, eastern Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2018.
    [31] Yao T D, Thompson L G, Shi Y F, Qin D H, Jiao K Q, Yang Z H, Tian L D, Thompson E M. Climate variation since the last interglaciation recorded in the Guliya ice core[J]. Science in China Series D: Earth Sciences, 1997, 40(6): 662-668.
    [32] 王杰. 青藏高原及周边地区MIS 3中期冰进探讨[J]. 第四纪研究, 2010, 30(5):1055-1065. doi: 10.3969/j.issn.1001-7410.2010.05.23

    WANG Jie. Glacial advance in the Qinghai-Tibet Plateau and peripheral mountains during the mid-MIS 3[J]. Quaternary Sciences, 2010, 30(5): 1055-1065. doi: 10.3969/j.issn.1001-7410.2010.05.23
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  84
  • HTML浏览量:  18
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-06-25

目录

    /

    返回文章
    返回