• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

济南泉域岩溶水系统溶解性有机质的光谱特性及指示作用

刘丹 田婵娟 陈学群 徐丹丹 管清花 辛光明

刘 丹,田婵娟,陈学群,等. 济南泉域岩溶水系统溶解性有机质的光谱特性及指示作用[J]. 中国岩溶,2024,43(3):500-512 doi: 10.11932/karst2024y022
引用本文: 刘 丹,田婵娟,陈学群,等. 济南泉域岩溶水系统溶解性有机质的光谱特性及指示作用[J]. 中国岩溶,2024,43(3):500-512 doi: 10.11932/karst2024y022
LIU Dan, TIAN Chanjuan, CHEN Xuequn, XU Dandan, GUAN Qinghua, XIN Guangming. Spectral characteristics and indication of dissolved organic matter in the karst water system of Jinan[J]. CARSOLOGICA SINICA, 2024, 43(3): 500-512. doi: 10.11932/karst2024y022
Citation: LIU Dan, TIAN Chanjuan, CHEN Xuequn, XU Dandan, GUAN Qinghua, XIN Guangming. Spectral characteristics and indication of dissolved organic matter in the karst water system of Jinan[J]. CARSOLOGICA SINICA, 2024, 43(3): 500-512. doi: 10.11932/karst2024y022

济南泉域岩溶水系统溶解性有机质的光谱特性及指示作用

doi: 10.11932/karst2024y022
基金项目: 山东省自然科学基金项目(ZR2021QD021,ZR2021MD086);水利技术示范项目(SF-202210);山东省水利科学研究院自选课题(SDSKYZX202121-1)
详细信息
    作者简介:

    刘丹(1991-),女,工程师,博士,研究方向为环境水文地质、岩溶地下水与泉水保护。E-mail:liudan9192@126.com

    通讯作者:

    陈学群(1979-),男,研究员,硕士,研究方向为水资源与水环境、地下水资源保护。E-mail:cxq1115@126.com

  • 中图分类号: P641.3

Spectral characteristics and indication of dissolved organic matter in the karst water system of Jinan

  • 摘要: 选取济南泉域岩溶水系统为研究对象,在分析水化学特征的基础上,采用紫外—可见光光谱、三维荧光光谱和平行因子分析方法,识别岩溶水系统中溶解性有机质(DOM)的组分、来源及其空间分布特征,探讨影响DOM分布特征的控制因素及其指示作用。结果表明:识别出的岩溶水系统中3种主要荧光组分分别为腐殖质物质、类蛋白色氨酸和类蛋白酪氨酸,间接补给区以腐殖质物质组分为主(31%),直接补给区和汇集排泄区以类蛋白色氨酸物质为主(48.5%和45.6%)。岩溶地下水DOM处于弱腐殖化水平,在微生物活动影响下以内源输入为主。腐殖质物质与TDS、Ec、K+、Mg2+等水化学指标显著相关;类蛋白色氨酸、类蛋白酪氨酸与微生物作用关系密切,可作为评价岩溶水系统生态及脆弱性的指标。

     

  • 图  1  研究区及采样点位置分布图

    Figure  1.  Distribution of the study area and the location of sampling points

    图  2  济南岩溶水水化学Piper三线图

    Figure  2.  Piper diagram of hydrochemistry of karst water in Jinan

    图  3  紫外—可见吸收光谱参数图

    Figure  3.  Diagram of ultraviolet-visible absorption spectrum parameter

    图  4  DOM三种荧光组分三维荧光光谱图(左)及其激发/发射波长图(右)

    Figure  4.  Three-dimensional fluorescence spectra of the three fluorescence components of DOM (left) and their corresponding excitation/emission wavelength (right)

    图  5  荧光特征参数

    Figure  5.  Fluorescent characteristics of DOM

    图  6  不同荧光组分最大荧光强度(a)和相对含量(b)

    Figure  6.  Maximum fluorescence intensity (a) and relative content (b) of different fluorescence components

    图  7  DOM指标相关性热图

    Figure  7.  Heat map of DOM index correlation

    表  1  主要现场理化指标和DOC浓度

    Table  1.   Main on-site physical and chemical indicators and DOC concentrations

    类型 编号 pH TDS/mg·L−1 Ec/μs·cm−1 DO/mg·L−1 DOC/mg·L−1
    地表水 间接补给区 SW-1 7.95 298 588 6.99 5.67
    SW-2 8.02 279 550 7.63 11.20
    SW-3 8.28 283 553 7.76 4.56
    直接补给区 SW-4 8.07 272 540 7.02 4.90
    SW-5 8.06 233 458 6.91 8.45
    汇集排泄区 SW-6 8.05 197 396 7.02 10.30
    地下水 间接补给区 KG-1 7.50 420 813 7.31 5.51
    KG-2 7.92 270 539 7.38 4.90
    KG-3 7.86 2421 4137 7.79 2.67
    KG-4 7.63 175 342 6.44 7.31
    直接补给区 KG-5 7.93 401 786 5.45 5.52
    KG-6 7.72 446 872 5.08 10.40
    汇集排泄区 KG-7 7.38 496 992 7.11 7.32
    KG -8 7.71 369 688 6.18 4.09
    KG-9 7.89 319 628 6.69 3.59
    KG-10 7.52 506 972 6.20 3.78
    KG-11 7.78 266 524 7.23 2.76
    KG-12 8.01 266 526 7.52 4.62
    KG-13 7.87 427 846 7.14 4.50
    S-1 7.86 703 1239 6.79 2.46
    下载: 导出CSV

    表  2  水体中主要荧光组分特征

    Table  2.   Characteristics of main fluorescence components in water

    组分激发波长/发射波长指示类型意义参考文献
    C1250 nm /420 nm腐殖质物质陆源输入、内源性形成240~270/370~440[37]
    235~255/410~450[7]
    C2240(280) nm /350 nm类蛋白色氨酸内源性形成225~237/340~381和375/340[38]
    C3237(270) nm /330 nm类蛋白酪氨酸内源性形成270~290/300~320[37]
    下载: 导出CSV
  • [1] Beck A J, Jones K C, Hayes M B H, Mingelgrin U. Organic substances in soil and water: Natural constituents and their influence on contaminant behavior[M]. Cambridge: Royal Society of Chemistry, 1993.
    [2] 徐长栋. 台湾绿岛热泉和钱塘江水体溶解性有机物的三维荧光特性与时空变化研究[D]. 杭州:浙江大学, 2017.

    XU Changdong. The study on three-dimensional fluorescent characteristics and temporal/spatial variations of dissolved organic matter in the hot spring in Green island, Taiwan and Qiantang River[D]. Hangzhou: Zhejiang University, 2017.
    [3] 洪晨飞, 崔正国, 白莹, 江涛, 胡清静, 周明莹, 李玉, 曲克明. 莱州湾荧光溶解有机物的时空分布[J]. 海洋科学, 2022, 46(6):15-31.

    HONG Chenfei, CUI Zhengguo, BAI Ying, JIANG Tao, HU Qingjing, ZHOU Mingying, LI Yu, QU Keming. Spatial and temporal distribution of fluorescent dissolved organic matter in Laizhou bay[J]. Marine Sciences, 2022, 46(6): 15-31.
    [4] 陈雪霜. 三峡库区内陆腹地典型水库型湖泊:长寿湖水体溶解性有机质(DOM)的光谱学特征[D]. 重庆:西南大学, 2017.

    CHEN Xueshuang. Spectral characteristics of dissolved organic matter (DOM) in Changshou lake: A typical inland reservoir of Three Gorges Region[D]. Chongqing: Southwest University, 2017.
    [5] Patel Sorrentino N, Mounier S, Benaim J Y. Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers[J]. Water Research, 2002, 36(10): 2571-2581.
    [6] 陈永娟, 胡玮璇, 庞树江, 王晓燕. 北运河水体中荧光溶解性有机物空间分布特征及来源分析[J]. 环境科学, 2016, 37(8):3017-3025.

    CHEN Yongjuan, HU Weixuan, PANG Shujiang, WANG Xiaoyan. Spatial distribution characteristics and source analysis of dissolved organic matter in Beiyun river[J]. Environmental Science, 2016, 37(8): 3017-3025.
    [7] 张连凯, 刘朋雨, 覃小群, 单晓静, 刘文, 赵振华, 姚昕, 邵明玉. 溶解性有机质在岩溶水系统中的迁移转化及影响因素分析[J]. 环境科学, 2018, 39(5):2104-2116.

    ZHANG Liankai, LIU Pengyu, QIN Xiaoqun, SHAN Xiaojing, LIU Wen, ZHAO Zhenhua, YAO Xin, SHAO Mingyu. Migration and transformation of dissolved organic matter in karst water system and an analysis of their influencing factors[J]. Environmental Science, 2018, 39(5): 2104-2116.
    [8] 傅平青, 刘丛强, 吴丰昌. 三维荧光光谱研究溶解有机质与汞的相互作用[J]. 环境科学, 2004, 25(6):140-144.

    FU Pingqing, LIU Congqiang, WU Fengchang. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of the complexation between mercury (Ⅱ) and dissolved organic matter[J]. Environmental Science, 2004, 25(6): 140-144.
    [9] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
    [10] Liang Y P, Gao X B, Zhao C H, Tang C L, Shen H Y, Wang Z H, Wang Y X. Review: Characterization, evolution, and environmental issues of karst water systems in Northern China[J]. Hydrogeology Journal, 2018, 26(5): 1371-1385. doi: 10.1007/s10040-018-1792-4
    [11] 邢立亭, 周娟, 宋广增, 邢学睿. 济南四大泉群泉水补给来源混合比探讨[J]. 地学前缘, 2018, 25(3):260-272.

    XING Liting, ZHOU Juan, SONG Guangzeng, XING Xuerui. Mixing ratios of recharging water sources for the four largest spring groups in Jinan[J]. Earth Science Frontiers, 2018, 25(3): 260-272.
    [12] Mahler B, Massei N. Anthropogenic contaminants as tracers in an urbanizing karst aquifer[J]. Journal of Contaminant Hydrology, 2007, 91(1): 81-106.
    [13] Jiang Y J, Yan J. Effects of land use on hydrochemistry and contamination of karst groundwater from Nandong underground river system, China[J]. Water Air and Soil Pollution, 2010, 210: 123-141. doi: 10.1007/s11270-009-0229-z
    [14] 刘丹, 陈学群, 田婵娟, 张文静, 管清花. 岩溶地下水环境微生物信息技术应用研究进展[J]. 中国岩溶, 2023, 42(2):185-192.

    LIU Dan, CHEN Xuequn, TIAN Chanjuan, ZHANG Wenjing, GUAN Qinghua. Research review on the application of microbial information technology to karst groundwater environment[J]. Carsologica Sinica, 2023, 42(2): 185-192.
    [15] Lapworth D J, Gooddy D C, Allen D, Old G H. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter[J]. Journal of Geophysical Research-Biogeosciences, 2009, 114: 1-10.
    [16] 何伟, 白泽琳, 李一龙, 刘文秀, 何玘霜, 杨晨, 杨斌, 孔祥臻, 徐福留. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2):359-372.

    HE Wei, BAI Zelin, LI Yilong, LIU Wenxiu, HE Qishuang, YANG Chen, YANG Bin, KONG Xiangzhen, XU Fuliu. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372.
    [17] Baker A, Lamont Black J. Fluorescence of dissolved organic matter as a natural tracer of ground water[J]. Groundwater, 2001, 39(5): 745-750. doi: 10.1111/j.1745-6584.2001.tb02365.x
    [18] Lapworth D J, Gooddy D C, Allen D, Old G H. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114: G00F02.
    [19] Cruz F W, Karmann I, Magdaleno G B, Coichev N, Viana O. Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, Southeastern Brazil[J]. Journal of Hydrology, 2005, 302(1-4): 1-12. doi: 10.1016/j.jhydrol.2004.06.012
    [20] 姚昕, 邹胜章, 夏日元, 许丹丹, 姚敏. 典型岩溶水系统中溶解性有机质的运移特征[J]. 环境科学, 2014, 35(5):1766-1772.

    YAO Xin, ZOU Shengzhang, XIA Riyuan, XU Dandan, YAO Min. Dissolved organic matter (DOM) dynamics in karst aquifer systems[J]. Environmental Science, 2014, 35(5): 1766-1772.
    [21] 刘渝港, 贺秋芳, 沈立成, 范佳鑫. 洞穴溶解有机质组分和循环过程的季节变化特征[J]. 中国岩溶, 2023, 42(3):456-471.

    LIU Yugang, HE Qiufang, SHEN Licheng, FAN Jiaxin. Seasonal variation characteristics of dissolved organic matter composition and cycle process in caves[J]. Carsologica Sinica, 2023, 42(3): 456-471.
    [22] Quiers M, Batiot Guilhe C, Bicalho C, Perrette Y, Seidel J L, Van Exter S. Characterisation of rapid infiltration flows and vulnerability in a karst aquifer using a decomposed fluorescence signal of dissolved organic matter[J]. Environmental Earth Sciences, 2014, 71(2): 553-561. doi: 10.1007/s12665-013-2731-2
    [23] Hartland A, Fairchild I J, Lead J R, Baker A. Fluorescent properties of organic carbon in cave dripwaters: Effects of filtration, temperature and pH[J]. Science of the Total Environment, 2010, 408(23): 5940-5950. doi: 10.1016/j.scitotenv.2010.08.040
    [24] Wu X C, Li C S, Sun B, Geng F Q, Lv M H, Ma X Y, Li H, Xing L T. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts[J]. Environmental Geochemistry and Health, 2020, 42: 2609-2626. doi: 10.1007/s10653-019-00450-z
    [25] 王开然, 吴振, 傅世东, 仇钰婷, 陈华伟. 济南泉域岩溶水系统水化学演化及成因分析[J]. 地球化学, 2023, 52(5):547-558.

    WANG Kairan, WU Zhen, FU Shidong, QIU Yuting, CHEN Huawei. Hydrochemical evolution and genesis analysis of karst water system in Jinan spring basin[J]. Geochimica, 2023, 52(5): 547-558.
    [26] 管清花, 李福林, 王爱芹, 冯平, 田婵娟, 陈学群, 刘丹. 济南市岩溶泉域地下水化学特征与水环境演化[J]. 中国岩溶, 2019, 38(5):653-662.

    GUAN Qinghua, LI Fulin, WANG Aiqin, FENG Ping, TIAN Chanjuan, CHEN Xuequn, LIU Dan. Hydrochemistry characteristics and evolution of karst spring groundwater system in Jinan[J]. Carsologica Sinica, 2019, 38(5): 653-662.
    [27] Chen X Q, Guan Q H, Li F L, Liu D, Han C H, Zhang W J. Study on the ecological control line in the major leakage area of Baotu spring in Shandong Province, Eastern China[J]. Ecological Indicators, 2021, 133: 108467. doi: 10.1016/j.ecolind.2021.108467
    [28] 管清花, 汪玉静, 陈学群, 曾桂华, 辛光明. 济南玉符河重点渗漏带岩溶地下水补给特征与保护[J]. 中国岩溶, 2023, 42(2):233-244.

    GUAN Qinghua, WANG Yujing, CHEN Xuequn, ZENG Guihua, XIN Guangming. Recharge characteristics and protection of karst groundwater in major leakage area of Yufu river in Jinan[J]. Carsologica Sinica, 2023, 42(2): 233-244.
    [29] 荣倩. 玉符河强渗漏带黄河水回灌过程中含水层堵塞研究[D]. 济南:济南大学, 2017.

    RONG Qian. Study on the aquifer clogging along with the groundwater recharge by the Yellow River water in the strong leakage area of the Yufu river[D]. Jinan: Jinan University, 2017.
    [30] Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2): 686-697.
    [31] 高洁, 江韬, 李璐璐, 陈雪霜, 魏世强, 王定勇, 闫金龙, 赵铮. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1):151-162.

    GAO Jie, JIANG Tao, LI Lulu, CHEN Xueshuang, WEI Shiqiang, WANG Dingyong, YAN Jinlong, ZHAO Zheng. Ultraviolet-Visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservior region[J]. Environmental Science, 2015, 36(1): 151-162.
    [32] Murphy K R, Hambly A, Singh S, Henderson R K, Baker A, Stuetz R, Khan S J. Organic matter fluorescence in municipal water recycling schemes: Kard a unified PARAFAC model[J]. Environmental Science & Technology, 2011, 45(7): 2909-2916.
    [33] Song K S, Shang Y X, Wen Z D, Jacinthe P A, Liu G, Lyu L L, Fang C. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis[J]. Water Research, 2019, 150: 403-417.
    [34] 朱裕强. 西安市典型时期水体中DOM的组成特征、紫外荧光光谱特性及来源分析[D]. 西安:西安建筑科技大学, 2022.

    ZHU Yuqiang. Analysis of DOM composition characteristics, spectral characteristics and source analysis of water bodies in Xi'an during the typical period[D]. Xi'an: Xi'an University of Architecture and Technology, 2022.
    [35] Zhou L, Zhou Y Q, Hu Y, Cai J, Liu X, Bai C R, Tang X M, Zhang Y L, Jang K S, Spencer R G M. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau[J]. Water Research, 2019, 160: 18-28. doi: 10.1016/j.watres.2019.05.048
    [36] 白梅, 刘志彬, 詹良通, 范占煌, 元妙新, 刘朱. 氧气微纳米气泡曝气异位修复渗滤液污染地下水效果研究[J]. 天津大学学报:自然科学与工程技术版, 2023, 56(1):18-26.

    BAI Mei, LIU Zhibin, ZHAN Liangtong, FAN Zhanhuang, YUAN Miaoxin, LIU Zhu. Ex-situ remediation of landfill leachate contaminated groundwater by oxygen Micro-Nano-Bubble aeration[J]. Journal of Tianjin University (Science and Technology), 2023, 56(1): 18-26.
    [37] 谢理, 杨浩, 渠晓霞, 朱元荣, 张明礼, 吴丰昌. 滇池典型陆生和水生植物溶解性有机质组分的光谱分析[J]. 环境科学研究, 2013, 26(1):72-79.

    XIE Li, YANG Hao, QU Xiaoxia, ZHU Yuanrong, ZHANG Mingli, WU Fengchang. Characterization of water extractable organic matters from the dominant plants in Lake Dianchi by multiple spectroscopic techniques[J]. Research of Environment Science, 2013, 26(1): 72-79.
    [38] Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters: A review[J]. River Research and Applications, 2007, 23(6): 631-649. doi: 10.1002/rra.1005
    [39] Frank S, Goeppert N, Goldscheider N. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs[J]. Science of the Total Environment, 2018, 615: 1446-1459. doi: 10.1016/j.scitotenv.2017.09.095
    [40] Fellman J B, Hood E, Spencer R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452
    [41] Simon K S, Pipan T, Ohno T, Culver D C. Spatial and temporal patterns in abundance and character of dissolved organic matter in two karst aquifers[J]. Fundamental and Applied Limnology, 2010, 177(2): 81-92. doi: 10.1127/1863-9135/2010/0177-0081
    [42] Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
    [43] 姚振兴, 孙韶华, 李昂臻, 王明泉, 董露露, 赵清华, 贾瑞宝. 济南玉符河人工补源地表水和周边地下水的水质特征[J]. 环境化学, 2022, 41(9):2908-2918.

    YAO Zhenxing, SUN Shaohua, LI Angzhen, WANG Mingquan, DONG Lulu, ZHAO Qinghua, JIA Ruibao. Study on quality characteristics of artificial supplementary surface water and surrounding groundwater in Yufuhe river Jinan[J]. Environmental Chemistry, 2022, 41(9): 2908-2918.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  144
  • HTML浏览量:  23
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-06-25

目录

    /

    返回文章
    返回